Articles
Students’ Responses Leveling in Solving Mathematical Problem Based on SOLO Taxonomy Viewed from Multiple Intelligences
Amalia Silwana;
Subanji Subanji;
Muhamatsakree Manyunu;
Arifah Adlina Rashahan
Indonesian Journal on Learning and Advanced Education (IJOLAE) Vol. 3, No. 1, January 2021
Publisher : Faculty of Teacher Training and Education, Universitas Muhammadiyah Surakarta, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.23917/ijolae.v3i1.10528
This research aimed to determine the level of student response with logical-mathematical, verbal-linguistic, and visual-spatial intelligence tendency in solving mathematical problems of linear programming material based on SOLO taxonomy. The level of students’ responses as the output in this research is expected to be used as a reference by mathematics teachers to determine the appropriate learning methods and strategies in accordance with the tendency of students' multiple intelligence types. It can be useful in realizing the effectiveness of mathematics learning about what needs to improved and emphasized in learning so that all students can achieve optimal responses in solving mathematical problem and can develop their multiple intelligences. This research is descriptive qualitative research with six students in the 11th Grade of SMAN 1 Gondanglegi as research subjects: two students with logical-mathematical intelligence tendency, two students with verbal-linguistic intelligence tendency, and two students with visual-spatial intelligence tendency. Data collection was done by providing multiple intelligence classification tests, linear programming problem tests, and interviews. The result of the research showed the students’ response level in solving the mathematical problem of linear programming material based on SOLO taxonomy is that students with logical-mathematical intelligence tendency reached extended abstract response level, students with verbal-linguistic intelligence tendency reached multistructural response level, and students with visual-spatial intelligence tendency reached multistructural and relational response level.
Diagnosis Kesulitan Siswa dalam Menyelesaikan Masalah Geometri-PISA Melalui Pemetaan Kognitif dan Upaya Mengatasinya dengan Scaffolding
Agung Prasetyo Abadi;
Subanji Subanji;
Tjang Daniel Chandra
MENDIDIK: Jurnal Kajian Pendidikan dan Pengajaran Vol 3 No 1 (2017)
Publisher : Universitas Mathla'ul Anwar Banten
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (828.083 KB)
|
DOI: 10.30653/003.201731.71
This study, thus, has unveiled the students’ difficulties in solving PISA-geometry problems and some efforts to face them through scaffolding. This research use qualitative approach. The student were given the problems of PISA-geometry then 6 student were choosen as the subject of study. The data were got from the results of the students’ work PISA-geometry was conducted, involving: understanding of problems, associating the problems with the concept having been taught especially Pythagorean theorem, calculating multiplication of decimals, simplifying the problems, elaborating the skecth, and deciding strategies of problem solving. Scaffolding conducted by researches is refers to scaffolding Anghilari level 2 (explaining, reviewing and restructuring).
Analisis Kemampuan Literasi Matematika Peserta Didik pada Materi Program Linear dalam Pembelajaran Daring
Risa Utaminingsih;
Subanji Subanji
ANARGYA: Jurnal Ilmiah Pendidikan Matematika Vol 4, No 1 (2021)
Publisher : Universitas Muria Kudus
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24176/anargya.v4i1.5656
Mathematical literacy skills indicate an individual's capacity to formulate, employ, and interpret and evaluate mathematics. Mathematical literacy skills are in line with numeracy skills which are an important component in solving problems in everyday life. The purpose of this study is to describe achievement of mathematics literacy skills in terms of aspects of the mathematical process in subject linear programming in online learning. This research is qualitative research with a descriptive approach. The data was collected by means of tests of mathematical literacy skills and interviews. The research subjects were 16 students of class XI MIPA 2 SMA Negeri 1 Gresik in the academic year 2020/2021. The results of this study in “Jajanan Tradisional” problem obtained an average score of formulate, employ, and interpret and evaluate are 89%, 68%, and 48%; whereas in “Gizi” Problem the average formulate’s score was 73%, employ’s score was 51%, and interpret and evaluate’s score was 21%. The achievement of students mathematical literacy test scores in “Jajanan Tradisional” problem was higher than students mathematical literacy test scores in “Gizi” Problem. Most of the students had not used diagrams, graphs and mathematical constructs, and took mathematical information from them. Most students only interpret mathematical results back to the real-world context without analyzing mathematical conclusions that make sense or not to the context of the problem, do not check the boundaries of mathematical concepts and mathematical solutions, and do not identify the limitations of the models used to solve problems.
Analisis Pemahaman Operasi Bentuk Aljabar Siswa SMP Berdasarkan Level Kecerdasan Emosional
Putri Ariningtyas;
Subanji Subanji;
I Nengah Parta
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 5 No 3 (2021): Volume 5 Nomor 3 Tahun 2021
Publisher : Mathematics Education Study Program
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31004/cendekia.v5i3.891
Penelitian ini bertujuan mendeskripsikan pemahaman operasi bentuk aljabar siswa SMP berdasarkan level kecerdasan emosional. Penelitian deskriptif dengan teknik pengambilan subjek purposive sampling dilaksanakan di SMPN 1 Malang pada 30 siswa kelas VII-H. Instrumen yang digunakan angket kecerdasan emosional dan lembar tes. Untuk mendeskripsikan secara kualitatif maka diambil tiga siswa yang diambil berdasarkan pengisian angket kecerdasan emosional, hasil pengerjaan tes serta rekomendasi guru. Pemahaman konseptual dan prosedural siswa tiap level yaitu, siswa level kecerdasan emosional tinggi memiliki pemahaman bentuk aljabar baik, siswa level kecerdasan emosional sedang memiliki pemahaman cukup baik tetapi belum mampu melakukan operasi bentuk aljabar, sedangkan siswa kecerdasan emosional rendah memiliki pemahaman kurang baik karna belum mampu menyatakan ulang konsep, serta melakukan operasi bentuk aljabar.
Analisis Interaksi Siswa pada Aktivitas Diskusi Kelompok dalam Pembelajaran Matematika Secara Daring
Aulia Nadia Sari;
Subanji Subanji;
Sisworo Sisworo
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 5 No 3 (2021): Volume 5 Nomor 3 Tahun 2021
Publisher : Mathematics Education Study Program
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31004/cendekia.v5i3.949
Pandemi Covid-19 masuk dan menyerang Indonesia sejak awal 2020. Pandemi ini memberikan dampak kepada masyarakat terutama bidang Pendidikan. Sekolah ditutup dan pembelajaran dilakukan secara online. Meskipun demikian, penciptaan suasana interaksi siswa menjadi hal yang penting untuk pembeljaran bermakna. Penelitian ini bertujuan untuk mendeskripsikan interaksi siswa pada aktivitas diskusi kelompok dalam pembelajaran matematika secara daingSampel penelitian ini adalah siswa kelas XI SMAN 1 Giri Banyuwangi. Subjek penelitian adalah tiga kelompok siswa kelas XI MIA 6 dengan masing-masing kelompok terdiri dari 5 siswa. Metode penelitian yang digunakan adalah metode penelitian kualitatif dengan pendekatan naratif. Teori pemosisian menunjukkan bagaimana siswa menentukan posisi berdasarkan percakapan. Selain itu alur cerita juga dapat dilihat dari bagaimana siswa melakukan negosiasi. Hasil penelitian menyatakan bahwa siswa melakukan berbagai gerakan pada saat berinteraksi. Banyaknya pertukaran pengetahuan lebih dari banyaknya pertukaran tindakan. Ahli dan pemula dapat diidentifikasi dengan jelas, sedangkan fasilitator tidak dapat diidentifikasi dengan jelas. Objek yang sering didiskusikan terkait dengan produk dan sumber daya. Berdasarkan arah tantangan, interaksi dapat dikelompokkan dalam dua bentuk yang berbeda yaitu bentuk kompleks dan bentuk sederhana. Bentuk kompleks terdiri dari dua arah yaitu tantangan diri sendiri dan tantangan kepada orang lain. Bentuk sederhana terdiri dari satu arah tantangan, yaitu tantangan diri sendiri.
Proses Pemecahan Masalah Sistem Persamaan Linear Dua Variabel Berdasarkan Tahapan Mason Ditinjau dari Tipe Adversity Quotient
Novi Nurhayati;
Subanji Subanji;
Swasono Rahardjo
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 6 No 1 (2022): Volume 6 Nomor 1 Tahun 2022
Publisher : Mathematics Education Study Program
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31004/cendekia.v6i1.1239
Penelitian ini bertujuan untuk mendeskripsikan proses pemecahan masalah matematika sistem persamaan linear dua variabel berdasarkan tahapan Mason ditinjau dari tipe adversity quotient (AQ). Penelitian deskriptif dengan teknik pengambilan data berdasarkan angket Adversity Response Profile (ARP) dilaksanakan di MTs Negeri 1 Kota Bima pada 119 siswa kelas IX. Penelitian yang dipilih dalam penelitian ini mempertimbangkan siswa yang memiliki tingkat AQ tinggi (climber), AQ sedang (camper) dan AQ rendah (quitter) berdasarkan angket ARP. Instrument yang digunakan adalah angket, lembar tes dan wawancara. Untuk mendeskripsikan secara kualitatif maka diambil 6 siswa yang diambil masing-masing 2 siswa berdasarkan setiap kategori Adversity Quotient dengan rekomendasi guru dan kesediaan siswa menjadi subjek penelitian. Hasil penelitian ini menunjukkan bahwa dalam proses pemecahan masalah siswa berdasarkan tahapan Mason, dimana siswa dapat memenuhi semua tahapan Mason: entry, attack, dan review. Untuk siswa camper hanya memenuhi tahapan entry dan attack saja. Sedangkan siswa quitter belum mampu memenuhi semua aspek entry, attack, dan review.
The Relationship of Student’s Algrebraic Thinking and Cognitive Learning Style
Alip Rahmawati Zahrotun Nisak;
Abdur Rahman As'ari;
Rustanto Rahardi;
S Subanji
IndoMath: Indonesia Mathematics Education Vol 3 No 2 (2020)
Publisher : Universitas Sarjanawiyata Tamansiswa
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
This study aimed at investigating the relationship between student’s algebraic thinking and cognitive style of Field Independent (FI) and Field Dependent (FD). The method implemented in the study is Group Embedded Figure Test (GEFT) which was intended to categorize students into the FI and FD styles. Afterward, to collect the data of students’ algebra thinking ability, a test was administered. The result of the test was compared to the result of GEFT test by integrating a computer program to find out the relationship between the students’ algebraic thinking and their cognitive styles, both FD and FI. The subjects of this research were the eighth-grade students totaling at 24 students. The findings of this study indicate that there is no relationship between manipulating symbols and students’ cognitive style.. There is a relationship between generalizing and formalizing and stundents’ cognitive styles. There is a relationship between using algebra as a tool and FD. There is a relationship between reasoning and representation and student’s cognitive style.
DEFRAGMENTASI PENGAKTIFAN SKEMA MAHASISWA UNTUK MEMPERBAIKI TERJADINYA BERPIKIR PSEUDO DALAM MEMECAHKAN MASALAH MATEMATIS
Kadek Adi Wibawa;
Toto Nusantara;
Subanji Subanji;
I Nengah Parta
Prima: Jurnal Pendidikan Matematika Vol 2, No 2 (2018): Prima: Jurnal Pendidikan Matematika
Publisher : FKIP Universitas Muhammadiyah Tangerang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31000/prima.v2i2.755
Berpikir pseudo merupakan salah satu penyebab terjadinya kesalahan mahasiswa dalam memecahkan masalah matematis. Berpikir pseudo dibagi menjadi dua, yaitu berpikir pseudo salah dan berpikir pseudo benar. Dalam penelitian ini dikaji berpikir pseudo salah, yang mana mahasiswa salah dalam memecahkan masalah matematis, namun dapat melakukan perbaikan setelah melakukan berpikir reflektif melalui intervensi terbatas yang diberikan oleh peneliti. Proses perbaikan yang dilakukan oleh mahasiswa diamati melalui proses defragmentasi struktur berpikir yang terjadi. Hasil penelitian ini, mengungkap bahwa terjadi proses pengaktifan skema atau mahaisiswa mengaktifkan skema yang sudah dimiliki sebelumnya untuk memperbaiki kesalahan yang terjadi. Penelitian ini tergolong penelitian kualitatif dengan jenis deskriptif eksploratif. Peneliti menggunakan tiga subjek untuk menggambarkan proses defragmentasi pengaktifan skema yang terjadi. Eksplorasi dilakukan pada saat melakukan studi pendahuluan dan pada saat penelitian.Kata Kunci: Berpikir pseudo-salah, intervensi terbatas, defragmentasi pengaktifan skema, dan memecahkan masalah matematis.
Kemampuan Pemecahan Masalah Matematis Siswa SMP ditinjau dari Gaya Kognitif
Refni Adesia Pradiarti;
Subanji Subanji
Mosharafa: Jurnal Pendidikan Matematika Vol 11, No 3 (2022)
Publisher : Institut Pendidikan Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (760.931 KB)
|
DOI: 10.31980/mosharafa.v11i3.1506
Siswa dituntut dapat menyelesaikan soal pemecahan masalah dalam setiap pembelajaran matematika. Namun ketika observasi awal, banyak ditemukan siswa kurang mampu memecahkan soal matematis dengan tepat dan sedikit siswa yang dapat menjawab persoalan matematis berdasarkan prosedur Polya terutama di Sumenep. Tujuan Penelitian untuk mendeskripsikan tingkat pemahaman peserta didik dalam mencari solusi dari permasalahan matematis yang terdapat pada materi Himpunan berdasarkan gaya kognitif Field Dependent (FD) dan Field Independent (FI). Metode penelitian ini yaitu deskriptif kualitatif. Hasil penelitian berupa data yang diambil dari peserta didik kelas 7A dan 7B di MTs Negeri 1 Sumenep menggunakan tes GEFT berdasarkan indikator pemecahan masalah Polya yang mengacu pada indikator NCTM. Dalam melakukan analisis lebih lanjut, dipilih 4 orang sebagai subjek untuk dilakukan wawancara secara mendalam dan dilakukan analisis pemecahan masalah. Dalam penelitian ini didapatkan peserta didik jenis FD kurang baik dalam memecahkan masalah matematis, sedangkan pada peserta didik jenis FI sangat baik dalam memecahkan masalah matematis dikarenakan mampu memenuhi semua indikator pemecahan masalah.Students are required to be able to solve problem-solving problems in every mathematics lesson. However, during the initial observations, it was found that many students were less able to solve mathematical problems correctly and few students were able to answer mathematical problems based on the Polya procedure, especially in Sumenep. The purpose of the study was to describe the level of understanding of students in finding solutions to mathematical problems contained in the set material based on Field Dependent (FD) and Field Independent (FI) cognitive styles. This research method is descriptive and qualitative. The results of the study are data taken from students in grades 7A and 7B at MTs Negeri 1 Sumenep using the GEFT test based on Polya's problem-solving indicators which refer to the NCTM indicator. In conducting further analysis, 4 people were selected as subjects for in-depth interviews and problem-solving analysis. In this study, it was found that the FD-type students were not good at solving mathematical problems, while the FI-type students were very good at solving mathematical problems because they were able to problem-solving indicators.
Cognitive Conflict of Relational Learners in Connecting Proportion Concepts on Three Term Ratio Problems
Ratnah Lestary;
Subanji;
Iqbal Ramadani
Numerical: Jurnal Matematika dan Pendidikan Matematika Vol. 6 No. 2 (2022)
Publisher : Institut Agama Islam Ma'arif NU (IAIMNU) Metro Lampung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25217/numerical.v6i2.2576
The study's purpose is to describe the cognitive conflicts experienced by students with relational understanding when solving the problem of three-term ratios. The current research is a case study with a qualitative approach using a purposeful sampling technique. The three research objects are representations of the condition that (1) the student was sure of his solution (cognitive conflict was solved) and the solution is correct, (2) the student was confident with his solution (cognitive conflict was solved) but the solution is not correct, and he is not confident with the solution (cognitive conflict was not solved), and the solution was not correct. The results of this study describe students with relational understanding experience cognitive conflicts, that is, being aware of the conflict between the initial concepts they have and the results obtained. Students feel doubtful and worried, as indicated by the awareness that the initial scheme applied to one proportion problem cannot be applied to other comparison questions. Students' cognitive conflicts with relational understanding do not always lead them to get the correct solution to the three-term ratio problems. The reason is that the student believes comparison is wrong (misconception).