This Author published in this journals
All Journal Jurnal Pendidikan Matematika dan IPA KADIKMA Jurnal Didaktik Matematika Shaut Al-'Arabiyah Delta-Pi : Jurnal Matematika dan Pendidikan Matematika JIPM (Jurnal Ilmiah Pendidikan Matematika) Jurnal Edukasi Matematika dan Sains Jurnal Elemen Jurnal Terapan Abdimas Briliant: Jurnal Riset dan Konseptual MaPan : Jurnal Matematika dan Pembelajaran SEJ (Science Education Journal) Jurnal Penelitian Pendidikan IPA (JPPIPA) JMPM: Jurnal Matematika dan Pendidikan Matematika JPM (Jurnal Pemberdayaan Masyarakat) Pi: Mathematics Education Journal Jurnal SOLMA Journal of Honai Math Abdimas Dewantara Paedagoria : Jurnal Kajian, Penelitian dan Pengembangan Kependidikan JPMI (Jurnal Pendidikan Matematika Indonesia) Indiktika : Jurnal Inovasi Pendidikan Matematika Buana Matematika : Jurnal Ilmiah Matematika dan Pendidikan Matematika Jurnal Cendekia : Jurnal Pendidikan Matematika Jurnal Pendidikan Matematika dan Integrasinya Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah di Bidang Pendidikan Matematika SIGMA AMALIAH: JURNAL PENGABDIAN KEPADA MASYARAKAT JPMI (Jurnal Pembelajaran Matematika Inovatif) Jurnal Riset Pendidikan dan Inovasi Pembelajaran Matematika (JRPIPM) Jurnal Pengabdian Masyarakat Borneo INTERAKSI : Jurnal Kependidikan JURNAL AXIOMA : Jurnal Matematika dan Pembelajaran Studi Kasus Inovasi Ekonomi MATHEMA: JURNAL PENDIDIKAN MATEMATIKA Journal of Innovation in Educational and Cultural Research Journal Social Science And Technology For Community Service Jurnal Pengabdian Dharma Wacana Bima Abdi: Jurnal Pengabdian Masyarakat Jurnal Pengabdian Kepada Masyarakat Patikala Lattice Journal : Journal of Mathematics Education and Applied Al-Khidmah Jurnal Pengabdian Masyarakat Lattice Journal : Journal of Mathematics Education and Applied Jurnal Pengabdian Masyarakat Sains dan Teknologi Pi: Mathematics Education Journal Cakrawala: Jurnal Pengabdian Masyarakat Global Prosiding Seminar Nasional Pengabdian Masyarakat Dedication : Jurnal Pengabdian Masyarakat Jurnal Edukasi Pengabdian Masyarakat: EDUABDIMAS Journal of Educational Management and Learning Daarus Tsaqofah Jurnal Pendidikan Pascasarjana Universitas Qomaruddin Jurnal Pendidikan MIPA Jurnal Pendidikan Progresif
Claim Missing Document
Check
Articles

Characterization of Errors and Math Anxiety in Solving Differential Equation Problems Aini, Septi Dariyatul; Zayyadi, Moh; Surahmi, Ema
JPMI (Jurnal Pendidikan Matematika Indonesia) Vol 10, No 1 (2025): Volume 10 Number 1, March 2025
Publisher : STKIP Singkawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26737/jpmi.v10i1.6646

Abstract

This study aims to describe the errors and anxiety of students with high, medium, and low mathematical abilities in solving Differential Equation problems. This study is a qualitative descriptive study. The instruments used are the Mathematics Ability Test, the Differential Equation Problem Solving Test and interview guidelines. Based on the results of the study, information was obtained that: (1) Subjects with high mathematical abilities made procedural errors because they could not solve problems in their simplest form and met the indicators of mathematical anxiety of fear of failure; (2) Subjects with moderate mathematical abilities made procedural errors, namely not being able to solve problems in their simplest form and technical errors, namely errors in calculating the value of arithmetic operations and using the distributive property of multiplication over addition. These subjects met the indicators of mathematical anxiety, namely ability and self-confidence, difficulty concentrating, nervousness, restlessness, heart palpitations; (3) Subjects with low mathematical abilities made conceptual errors, namely errors in using formulas in answering questions and errors in using formulas that did not comply with the conditions/prerequisites for the validity of the formula; procedural errors, namely not being able to solve problems in their simplest form and not being able to continue the solution steps; technical errors, namely errors in calculating the value of an arithmetic operation. This subject meets the indicators of mathematical anxiety, namely ability and self-confidence, difficulty concentrating, fear of failure, nervousness, unhappiness, restlessness, cold sweats, heart palpitations, headaches.Karakterisasi Kesalahan dan Kecemasan Matematika dalam Menyelesaikan Soal Persamaan DiferensialABSTRAKPenelitian ini bertujuan mendeskripsikan kesalahan dan kecemasan siswa berkemampuan matematika tinggi, sedang, dan rendah dalam menyelesaikan soal Persamaan Diferensial. Penelitian ini termasuk penelitian deskriptif kualitatif. Instrumen yang digunakan adalah Tes Kemampuan Matematika, Tes Penyelesaian Soal Persamaan Diferensial dan pedoman wawancara. Berdasarkan hasil penelitian diperoleh informasi bahwa: (1) Subjek berkemampuan matematika tinggi melakukan kesalahan prosedural karena tidak dapat menyelesaikan soal pada bentuk paling sederhana dan memenuhi indikator kecemasan matematika takut gagal; (2) Subjek berkemampuan matematika sedang melakukan kesalahan prosedural yaitu tidak dapat menyelesaikan soal pada bentuk paling sederhana dan kesalahan teknik yaitu kesalahan menghitung nilai dari operasi hitung dan menggunakan sifat distributif perkalian terhadap penjumlahan. Subjek ini memenuhi indikator kecemasan matematika yaitu kemampuan dan kepercayaan diri, sulit konsentrasi, gugup, gelisah, jantung berdebar; (3) Subjek berkemampuan matematika rendah melakukan kesalahan konseptual yaitu kesalahan dalam penggunaan rumus dalam menjawab soal dan  kesalahan menggunakan rumus yang tidak sesuai dengan kondisi/prasyarat berlakunya rumus; kesalahan prosedural yaitu tidak dapat menyelesaikan soal pada bentuk paling sederhana dan tidak dapat melanjutkan langkah penyelesaian; kesalahan teknik yaitu kesalahan dalam menghitung nilai suatu operasi hitung. Subjek ini memenuhi indikator kecemasan matematika yaitu kemampuan dan kepercayaan diri, sulit konsentrasi, takut gagal, gugup, kurang senang, gelisah, berkeringat dingin, jantung berdebar, sakit kepala.Kata Kunci :kesalahan; kecemasan; persamaan diferensial
Prospective Teachers’ Commognitive: The Pedagogical Knowledge in Designing Mathematics Class for Proving Trigonometric Identity Moh. Zayyadi; Harfin Lanya; Yanti Linarsih; Toto Nusantara; Dimas Danar Septiadi; Yoga Dwi Windy Kusuma Ningtyas
Jurnal Pendidikan MIPA Vol 25, No 2 (2024): Jurnal Pendidikan MIPA
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jpmipa.v25i2.pp946-960

Abstract

This research aims to describe the pedagogical commognitive framework of prospective teachers in designing and teaching mathematics class for trigonometric identity sub materials. This type of research is qualitative research with a descriptive approach. Determination of the subject in this study using a purposive sampling technique. The subjects of this study were prospective teacher students who were undergoing microteaching learning. The pedagogical skills would be observed from their design and teaching practices activities which consist of the introduction activities, main activities, and closing activities. Researchers tried to combine commognitive and pedagogical knowledge to analyze the data. There are four components of commognitive were used in pedagogical knowledge. Those are word use, visual mediator, routine, and narratives. The main instrument in this study is the researcher himself because the researcher himself is planning, implementing, collecting data during the research through recording video and audio learning, observing, or interviewing the subject and reporting the results of the study. Word use is used as a keyword and the initial information given to students in accordance with the material to be taught. The use of the word use component is done by means of spoken orally. Visual mediators used in learning activities are prospective teacher students using laptop and blackboard media in explaining learning material, giving examples of questions, and several other learning activities. The method that prospective teacher students use in presenting material using sample questions, reminding the previous material, in providing understanding to new students then forming a conclusion (inductive approach). In addition, prospective teacher students provide understanding and focus on the concepts of the material being taught then provide questions, questions, and exercises in supporting student understanding (deductive approach).         Keywords: pedagogical commognitive, designing mathematics, prospective teachers, trigonometric identity.DOI: http://dx.doi.org/10.23960/jpmipa/v25i2.pp946-960
Characterization of Errors and Math Anxiety in Solving Differential Equation Problems Aini, Septi Dariyatul; Zayyadi, Moh; Surahmi, Ema
JPMI (Jurnal Pendidikan Matematika Indonesia) Vol 10, No 1 (2025): Volume 10 Number 1, March 2025
Publisher : STKIP Singkawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26737/jpmi.v10i1.6646

Abstract

This study aims to describe the errors and anxiety of students with high, medium, and low mathematical abilities in solving Differential Equation problems. This study is a qualitative descriptive study. The instruments used are the Mathematics Ability Test, the Differential Equation Problem Solving Test and interview guidelines. Based on the results of the study, information was obtained that: (1) Subjects with high mathematical abilities made procedural errors because they could not solve problems in their simplest form and met the indicators of mathematical anxiety of fear of failure; (2) Subjects with moderate mathematical abilities made procedural errors, namely not being able to solve problems in their simplest form and technical errors, namely errors in calculating the value of arithmetic operations and using the distributive property of multiplication over addition. These subjects met the indicators of mathematical anxiety, namely ability and self-confidence, difficulty concentrating, nervousness, restlessness, heart palpitations; (3) Subjects with low mathematical abilities made conceptual errors, namely errors in using formulas in answering questions and errors in using formulas that did not comply with the conditions/prerequisites for the validity of the formula; procedural errors, namely not being able to solve problems in their simplest form and not being able to continue the solution steps; technical errors, namely errors in calculating the value of an arithmetic operation. This subject meets the indicators of mathematical anxiety, namely ability and self-confidence, difficulty concentrating, fear of failure, nervousness, unhappiness, restlessness, cold sweats, heart palpitations, headaches.Karakterisasi Kesalahan dan Kecemasan Matematika dalam Menyelesaikan Soal Persamaan DiferensialABSTRAKPenelitian ini bertujuan mendeskripsikan kesalahan dan kecemasan siswa berkemampuan matematika tinggi, sedang, dan rendah dalam menyelesaikan soal Persamaan Diferensial. Penelitian ini termasuk penelitian deskriptif kualitatif. Instrumen yang digunakan adalah Tes Kemampuan Matematika, Tes Penyelesaian Soal Persamaan Diferensial dan pedoman wawancara. Berdasarkan hasil penelitian diperoleh informasi bahwa: (1) Subjek berkemampuan matematika tinggi melakukan kesalahan prosedural karena tidak dapat menyelesaikan soal pada bentuk paling sederhana dan memenuhi indikator kecemasan matematika takut gagal; (2) Subjek berkemampuan matematika sedang melakukan kesalahan prosedural yaitu tidak dapat menyelesaikan soal pada bentuk paling sederhana dan kesalahan teknik yaitu kesalahan menghitung nilai dari operasi hitung dan menggunakan sifat distributif perkalian terhadap penjumlahan. Subjek ini memenuhi indikator kecemasan matematika yaitu kemampuan dan kepercayaan diri, sulit konsentrasi, gugup, gelisah, jantung berdebar; (3) Subjek berkemampuan matematika rendah melakukan kesalahan konseptual yaitu kesalahan dalam penggunaan rumus dalam menjawab soal dan  kesalahan menggunakan rumus yang tidak sesuai dengan kondisi/prasyarat berlakunya rumus; kesalahan prosedural yaitu tidak dapat menyelesaikan soal pada bentuk paling sederhana dan tidak dapat melanjutkan langkah penyelesaian; kesalahan teknik yaitu kesalahan dalam menghitung nilai suatu operasi hitung. Subjek ini memenuhi indikator kecemasan matematika yaitu kemampuan dan kepercayaan diri, sulit konsentrasi, takut gagal, gugup, kurang senang, gelisah, berkeringat dingin, jantung berdebar, sakit kepala.Kata Kunci :kesalahan; kecemasan; persamaan diferensial
Mathematical Representation of High School Students in Understanding the Concept of Arithmetic Sequences and Series Sri Irawati; Sri Indriati Hasanah; Moh Zayyadi; Arifatul Melinda Zein
Jurnal Pendidikan MIPA Vol 23, No 1 (2022): Jurnal Pendidikan MIPA
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study aims to describe the mathematical representation ability of class XI MA Sumber Payung students in understanding the concepts of arithmetic sequences and series. This type of research is descriptive qualitative research. The results obtained by students with high math skills in understanding the concepts of arithmetic sequences and series are in the form of representations of mathematical equations/expressions, where students can create mathematical equations or models from other representations given, solve problems involving mathematical expressions and representations of words/written texts. Students can write down what is known and asked in a data or information, so that in answering questions using words or written text. Likewise for students with low mathematical abilities, representation in understanding the concept of arithmetic sequences and series is in the form of representations of mathematical equations/expressions and representations of words/text. Keywords: Representation, understanding arithmetic concepts, sequences and series. DOI: http://dx.doi.org/10.23960/jpmipa/v23i1.pp78-86
Development of an Ethno-Commognitive Based IEAC Learning Model to Improve TPACK of Prospective Mathematics Teachers Moh Zayyadi; Lili Supardi; Yanti Linarsih; Harfin Lanya; Mosdalifah Mosdalifah; Andi Saputra
Jurnal Pendidikan Progresif Vol 13, No 3 (2023): Jurnal Pendidikan Progresif
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Development of an Ethno-Commognitive Based IEAC Learning Model to Improve TPACK of Prospective Mathematics Teachers. Objectives: Ethno-commognitive based IEAC learning model to improve the TPACK abilities of prospective mathematics teacher students. Methods: This type of research is development research. The development carried out in this research is a learning model consisting of a lesson plan, student worksheets, and ethno-commocognitive-based tests to improve the TPACK abilities of prospective teacher students in supporting independent learning. The development procedure used is the ADDIE model. Data analysis in this research is as follows: validation analysis, practicality analysis, and effectiveness analysis. Findings: Development of an ethno-commognitive based IEAC learning model to increase the TPACK of prospective mathematics teacher students to meet the criteria of valid, practical, and effective. Conclusion: Development of an ethno-commognitive based IEAC learning model to improve the TPACK abilities of prospective mathematics teacher students on number pattern material that meets the criteria of valid, practical and effective. Keywords: IEAC learning model, ethno-commognitive, TPACK.DOI: http://dx.doi.org/10.23960/jpp.v13.i3.202324
Profile of Students’ Mathematical Representation in Solving Trigonometric Problems Based on Mathematics Ability Sri Indriati Hasanah; Hasan Basri; Moh. Zayyadi
Jurnal Pendidikan Progresif Vol 12, No 1 (2022): Jurnal Pendidikan Progresif
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Profile of students' mathematical representation in solving trigonometric problems based on mathematics ability. Objectives: This study aims to determine and describe students' mathematical representational abilities in solving trigonometric problems based on mathematical abilities. Methods: This research is a qualitative research with a descriptive approach, in this study 3 subjects were selected from 36 students. Data was collected through tests and interviews. Findings: Students with high math skills are good at using visual representations and quite good at using equation representations or mathematical expressions. Students with moderate mathematical ability are quite good at using visual representations and representations of mathematical equations or expressions. Students with low mathematical ability are quite good at using visual representations but are still not good at using representations of mathematical equations or expressions. Conclusion: The three research subjects only involved visual representations and mathematical equations or expressions, but did not involve representations of words or written text in solving problems. Keywords: mathematical representation, problem solving, and mathematical ability.DOI: http://dx.doi.org/10.23960/jpp.v12.i1.202227
Mathematical Representation of High School Students in Understanding the Concept of Arithmetic Sequences and Series Sri Irawati; Sri Indriati Hasanah; Moh Zayyadi; Arifatul Melinda Zein
Jurnal Pendidikan MIPA Vol 23, No 1 (2022): Jurnal Pendidikan MIPA
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study aims to describe the mathematical representation ability of class XI MA Sumber Payung students in understanding the concepts of arithmetic sequences and series. This type of research is descriptive qualitative research. The results obtained by students with high math skills in understanding the concepts of arithmetic sequences and series are in the form of representations of mathematical equations/expressions, where students can create mathematical equations or models from other representations given, solve problems involving mathematical expressions and representations of words/written texts. Students can write down what is known and asked in a data or information, so that in answering questions using words or written text. Likewise for students with low mathematical abilities, representation in understanding the concept of arithmetic sequences and series is in the form of representations of mathematical equations/expressions and representations of words/text.Keywords: Representation, understanding arithmetic concepts, sequences and series.DOI: http://dx.doi.org/10.23960/jpmipa/v23i1.pp78-86
Ethnomathematics of Madurese Cultural Characteristics in the Emancipated Curriculum Sri Indriati Hasanah; Moh Zayyadi; Chairul Fajar Tafrilyanto; Yoga Dwi Windy Kusuma Ningtyas
Journal of Innovation in Educational and Cultural Research Vol 5, No 3 (2024)
Publisher : Yayasan Keluarga Guru Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46843/jiecr.v5i3.1147

Abstract

The concept of mathematics is inextricably linked to the fabric of everyday life. Indeed, the cultural milieu of a given region can also profoundly influence how mathematical concepts are employed. Ethnomathematics represents a component of the mathematical learning process that integrates mathematical concepts within a given culture. This study aims to ascertain the characterization of ethnomathematics within the Madurese culture as reflected in the emancipated curriculum in Bangkalan Regency. This study employs an ethnographic approach, following a series of stages or cycles. The ethnographic research cycle comprises six stages: the selection of an ethnographic project, the formulation of ethnographic questions, the collection of ethnographic data, the production of ethnographic recordings, and the analysis of ethnographic data. Thematic ethnographic analysis was employed as the data analysis technique in this ethnographic study to provide a comprehensive description of the characteristics of Madurese culture in the emancipated curriculum. The research report's primary focus is a descriptive account of the cultural context. This study's findings indicate that mathematical concepts are embedded within the Madurese culture in Bangkalan Regency and can be leveraged as a learning medium in educational activities and as a representation of real-world mathematical geometry. Consequently, integrating these mathematical concepts within the Madurese culture in Bangkalan Regency can enhance students' comprehension of geometry.
PENDAMPINGAN SEKOLAH INKLUSI MELALUI MEDIA ETHNO WEB DIGITAL DALAM IMPLEMENTASI PEMBELAJARAN BERDIFERENSI DAN PENGUATAN PROFIL BELAJAR PANCASILA lanya, harfin; Zayyadi, Moh; Linarsih, Yanti; Mosdalifah; Saputra, Andi
Jurnal Pengabdian Kepada Masyarakat Patikala Vol. 3 No. 1 (2023): ABDIMAS PATIKALA
Publisher : Education and Talent Development Center of Indonesia (ETDC Indonesia)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51574/patikala.v3i1.881

Abstract

Tujuan pengabdian ini adalah memberikan solusi yang menjadi masalah mitra dan melakukan pendampingan dalam implementasi literasi dan numerasi dalam kurikulum merdeka khususnya pada siswa ABK di sekolah inklusi. Pelaksanaan PkM ini dilaksanakan di sekolah mitra yaitu SDN Gladak Anyar 2 selama 2 bulan. Sasaran dari kegiatan ini adalah guru-guru SD yang memiliki permasalahan yang serupa yaitu memiliki siswa ABK yang kurang dalam kemampuan literasi dan numerasi sehingga tim pengabdian merancang perlakuan khusus yang akan diterapkan di dalam kelas. Rancangan yang disiapkan oleh tim abdimas berupa web media pembelajaran ethno-web digital. Kegiatan dimulai dari identifikasi masalah, pembuatan ethno-web digital, lokakarya dan pendampingan, serta evaluasi kegiatan. Program pengabdian masyarakat yang telah dilaksanakan sangat bermanfaat khususnya SDN Gladak Anyar 2 sebagai mitra. Dengan adanya kegiatan ini, sekolah mitra memiliki media pembelajaran ethno-web digital yang dapat digunakan dalam implementasi kurikulum merdeka, pembelajaran berdiferensiasi, penguatan profil pelajar pancasila dan penggunaan ethno-web digital. Implementasi penggunaan ethno-web digital bagi siswa berkebutuhan khusus, diharapkan dapat meningkatkan hasil belajarEthno-Web Digital, Sekolah Inklusi, Profil Pelajar Pancasila
PENGEMBANGAN LEMBAR KERJA SISWA BERBASIS ETNOMATEMATIKA DALAM MEMBANGUN PEMAHAMAN KONSEP SISWA Hasanah, Sri Indriati; Hafsi, Ainur Rofiq; Zayyadi, Moh
Jurnal Pendidikan Matematika dan IPA Vol 10, No 2 (2019): Juli 2019
Publisher : Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (532.287 KB) | DOI: 10.26418/jpmipa.v10i2.29609

Abstract

This study aims to describe the quality of teaching materials developed in the form of ethnomatematic Student Worksheets (LKS) in building understanding of students' initial concepts that are valid, practical and effective. This research is a development research that refers to the simplified Thiagarajan 4-D model into three stages including defining, designing, developing. The product produced is a Student Activity Sheet based on ethnomatematics in building understanding of concepts, lesson plans and Tests of Learning Outcomes so that learning objectives are achieved. The results of the study show that the Student Activity Sheet is ethnomatemically based in developing the initial concept of student understanding that has been developed to meet the criteria of valid, practical and effective.
Co-Authors Abd. Wahab Syahroni Abdul Roziq Agus Subaidi Agus Subaidi, Agus Agustin, Dayriqoh Ahmad Dzulfikar Al Farobi Ahmad Muhaimin Ahmad Wachidul Kohar Aini, Septi Dariyatul Akbar, Rifal Akhmad Riski Rifanda Al Mubarokah, Nurul Hidayah Amalia, Laili Amirul Mukminin Andang Andang Andi Saputra Andi Saputra Andi Saputra Anita Anita Anjarani, Devie Reztia Ardiana Ardiana, Ardiana Arifatul Melinda Zein Arifatul Melinda Zein Arnasari Merdekawati Hadi Bambang Kurnadi Chairul Fajar Tafrilyanto Chairul Fajar Tafrilyanto Chairul Fajar Tafrilyanto Dayat Hidayat Dewi Sartika Dewi Silviana Dhofir Dhofir Dhofir, Dhofir Dian Kurniati Didik Hermanto Dimas Danar Septiadi Durroh Halim Dusalan Dusalan Dwi Ivayana Sari Edi Mulyadin Elsa Agustina Ema Surahmi Ema Surahmi Enditiyas Pratiwi Faisal Estu Yulianto Fajriyeh, Lailatul Faroidusy Syauqi Ahmad Z Fathorrozi, Moh Fetty Nuritasari Fetty Nuritasari Firdaus , Sultan Agung Firdaus, Alfin Firman Nurul Fauzi Fitria, Lely Gunawan Gunawan Habibi , Nur Syakherul Hafidah Hafidah Hafsi, Ainur Rofiq Halim, Durroh Halimatus Zahroh Hamzah, Moh Aminollah Harfin Lanya, Harfin Haris Hasan Basri Hasan Basri Hasan Basri Hasanah, Anisatul Hasanah, Sri Indriati Heny Ekawati Haryono Hersiyati Palayukan Heryadi, Yudi Ida Kaniawati Iib Marzuqi Iib Marzuqi, Iib Ika Santia Ika Wirahmad Imam, Khana Zulfana Khoir , Alfian Kuratul Aini Saleh Lailatul Qomariyah, Lailatul Lili Supardi Linarsih, Yanti Lutfiyah Lutfiyah M. Rizki Wirawan Mansyur, Muhammad Umar Maulidia, Siti Nur Mery Lia Anggraenia Mikrayanti Mikrayanti Milawati Milawati Misriyana, Septiyadini Misriyana, Septiyadini Moh Zali Moh. Syafi’i Mohammad Toriq Aziz Mosdalifah Mosdalifah Mosdalifah Mosdalifah, Mosdalifah Muchlis Muchlis Muhammad Noor Kholid Mulkis, Ismi Malika Murtalib Murtalib Mutmainah Mutmainah Nanna, A.Wilda Indra Neneng Aminah Nihayatus Sa'adah Nisa, Sayyidatun Novita Dianatus Zahroh NUR BAETI Nurillah, Nurillah Nuritasari, Fetty Nurul Fajaria Putri Pai’pinan, Matius Pratiwi, Enditiyas Putri, Nurul Fajaria Qori’atul Humairah R. Taufiqurrochman Ratnadi, Dewi Regita Dwi Andari Riski Kholif Arohman Rizqiyah, Tsalitsatur Rochmadyan, Nabillah Ayuditha Rochmadyan, Nabillah Ayuditya Rofiva Rofiva Safitri, Rosalinda Saifullah Saifullah Sayyidatun Nisa Septi Dariyatul Aini Septi Dariyatul Aini Septiadi, Dimas Danar Septiana Lian Sawitri, Dwi Septiyadini Misriyana Sharifah Osman Shobirin, Mohammad Sholehein, Akmalus Sisca Patricia Dwi Agustin Siti Faizah Sitti Karimah Sulfiah Sowanto Sowanto Sri Indriati Hasanah Sri Irawati Sri Wahyuni Sriaryaningsyih Suci Prihatiningtyas Sulfiah, Sitti Karimah Supardi, Lili Surahmi, Ema Susanti, Adisah Sutaman Syarifuddin Syarifuddin Tafrilyanto, Chairul Fajar Taufik Rahman Toto Nusantara Ubaidi Ukthi Raudhatul Jannah Ukthi Raudhatul Jannah Yanti Linarsih Yanti Linarsih Yasser Arafat Yeyen Dwi Septiani Yoga Dwi Windy Kusuma Ningtyas Yoga Dwi Windy Kusuma Ningtyas Yuliarsih Yuliarsih, Yuliarsih Yuniarti, Helda