Education plays a vital role in shaping individual development and national progress. One key factor influencing learning effectiveness is students' learning styles, which determine how individuals absorb, organize, and process information. Understanding these differences is crucial for designing effective teaching methods. This research develops a Decision Support System (DSS) to determine student learning styles at SMA Negeri 1 Jangka using the Multi-Attribute Utility Theory (MAUT) method. MAUT is chosen for its ability to evaluate multiple criteria, convert them into numerical values, and systematically identify the most suitable learning approach. The alternatives in this study include Project Based Learning (PBL), Problem-Based Learning (PrBL), Inquiry-Based Learning (IBL), Discovery Learning (DL), and Contextual Teaching and Learning (CTL). The MAUT analysis considers five criteria: student activeness, material understanding, collaboration, initiative and creativity, and teacher-student communication. The research stages include literature study, data collection, system and database design, MAUT implementation, and system evaluation. The results, based on MAUT calculations, show that Inquiry-Based Learning (IBL) scores the highest at 13.611, followed by Discovery Learning (DL) at 13.018, Problem-Based Learning (PrBL) at 12.975, Contextual Teaching and Learning (CTL) at 12.929, and Project Based Learning (PBL) at 12.558. This system assists educators in designing personalized learning strategies that align with students' strengths. Leveraging data-driven analysis enhances education quality, fosters a student-centred learning environment, and improves academic performance and lifelong learning habits.