p-Index From 2021 - 2026
14.203
P-Index
This Author published in this journals
All Journal International Journal of Informatics and Communication Technology (IJ-ICT) International Journal of Advances in Applied Sciences TEKNIK INFORMATIKA Techno.Com: Jurnal Teknologi Informasi Pixel : Jurnal Ilmiah Komputer Grafis Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Transformatika JUITA : Jurnal Informatika Scientific Journal of Informatics InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Fountain of Informatics Journal Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) SemanTIK : Teknik Informasi RABIT: Jurnal Teknologi dan Sistem Informasi Univrab INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi JURNAL MEDIA INFORMATIKA BUDIDARMA CogITo Smart Journal JTERA (Jurnal Teknologi Rekayasa) Indonesian Journal of Artificial Intelligence and Data Mining INOVTEK Polbeng - Seri Informatika JITK (Jurnal Ilmu Pengetahuan dan Komputer) JURNAL REKAYASA TEKNOLOGI INFORMASI JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal Teknoinfo ILKOM Jurnal Ilmiah Voice Of Informatics MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer JURNAL TEKNOLOGI DAN OPEN SOURCE Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) Digital Zone: Jurnal Teknologi Informasi dan Komunikasi JURIKOM (Jurnal Riset Komputer) JURTEKSI ComTech: Computer, Mathematics and Engineering Applications CSRID (Computer Science Research and Its Development Journal) JOISIE (Journal Of Information Systems And Informatics Engineering) EDUMATIC: Jurnal Pendidikan Informatika METIK JURNAL Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar Jurnal Manajemen Informatika dan Sistem Informasi Jurnal Informatika dan Rekayasa Elektronik Jurnal Sistem informasi dan informatika (SIMIKA) Zonasi: Jurnal Sistem Informasi Journal of Applied Engineering and Technological Science (JAETS) JSR : Jaringan Sistem Informasi Robotik Sains, Aplikasi, Komputasi dan Teknologi Informasi Grouper: Jurnal Ilmiah Perikanan JISA (Jurnal Informatika dan Sains) JSES : Journal of Sport and Exercise Science Aiti: Jurnal Teknologi Informasi Jurnal Sistem Informasi dan Sistem Komputer Journal of Applied Data Sciences Jurnal J-PEMAS Decode: Jurnal Pendidikan Teknologi Informasi Ikhtisar: Jurnal Pengetahuan Islam Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen Formosa Journal of Science and Technology (FJST) Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi) J-COSCIS : Journal of Computer Science Community Service JAIA - Journal of Artificial Intelligence and Applications Malcom: Indonesian Journal of Machine Learning and Computer Science SATIN - Sains dan Teknologi Informasi Bulletin of Social Informatics Theory and Application Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Jurnal Masyarakat Berdikari dan Berkarya (MARDIKA) The Indonesian Journal of Computer Science Advance Sustainable Science, Engineering and Technology (ASSET) Indonesian Journal of Health Research Innovation
Claim Missing Document
Check
Articles

Robust Predictive Model for Heart Disease Diagnosis Using Advanced Machine Learning Techniques Sovia, Rini; Anam, M. Khairul; Wisky, Irzal Arief; Permana, Randy; Rahmi, Nadya Alinda; Zain, Ruri Hartika
Journal of Applied Data Sciences Vol 7, No 1: January 2026
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v7i1.1092

Abstract

This study presents a hybrid ensemble learning framework designed to enhance the predictive accuracy, robustness, and generalizability of heart disease classification models. The framework integrates three base classifiers: Decision Tree (DT), Gaussian Naive Bayes (GNB), and K Nearest Neighbor (KNN), which are combined using a stacking ensemble method with Logistic Regression (LR) as the meta learner. Each classifier contributes a distinct analytical perspective: DT models nonlinear relationships, GNB provides probabilistic reasoning, and KNN captures similarity-based patterns. Logistic Regression aggregates their outputs to produce a unified predictive decision. To mitigate class imbalance commonly observed in clinical datasets, the Synthetic Minority Oversampling Technique (SMOTE) is applied to generate synthetic samples of the minority class, improving the model’s ability to recognize underrepresented cases. Hyperparameter optimization is performed using the Optuna framework, which applies the algorithm to efficiently explore parameter configurations. The proposed model was evaluated on a publicly available heart disease dataset and achieved an accuracy of 99.61%, precision of 99.62%, recall of 99.59%, F1 score of 99.60%, and specificity of 99.58%, corresponding to a false positive rate of only 0.42 percent. These results demonstrate the framework’s strong ability to accurately identify heart disease cases while minimizing misclassification. The integration of SMOTE, stacking, and Optuna optimization contributes to its superior performance and robustness. Consequently, this approach shows strong potential for integration into clinical decision support systems to assist healthcare professionals in reliable and timely diagnosis.
The Role of Machine Learning in Modern Football Analytics: A Systematic Review of Approaches and Their Implications Waskita, Ghozi Indra; Kurniawan, Haris; Yudhistira, Dewangga; Mohamad, Nur Ikhwan Bin; Anam, M. Khairul
JSES : Journal of Sport and Exercise Science Vol. 8 No. 2 (2025): September
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jses.v8n2.p178-186

Abstract

Purpose: Football has increasingly become a multidisciplinary field that integrates not only physical and tactical elements but also technological advancements to enhance decision-making. One of the prominent developments in this domain is the application of machine learning (ML) techniques to analyze match-related data, assess player performance, and optimize team strategies. This study aims to conduct a systematic literature review of contemporary research that employs machine learning algorithms within the context of football. Materials and Methods: A total of 50 scientific articles were initially retrieved from various reputable databases. Following a rigorous screening and eligibility assessment, 30 articles were selected for detailed analysis. Result: These studies employ diverse machine learning approaches, including Support Vector Machines (SVMs), Random Forests, XGBoost, Deep Learning, and clustering methods, for a wide range of purposes, such as match outcome prediction, player performance evaluation, injury detection, and playing position classification. The findings of this review underscore the potential of machine learning to contribute significantly to data-driven decision-making in football, providing valuable insights for coaches, performance analysts, and club management. Conclusion: Furthermore, this study identifies key challenges that remain, including data quality, data availability, and the interpretability of complex models. This review will serve as a critical reference for researchers and practitioners advancing intelligent technologies in sports, with particular emphasis on football.
Development of Knowledge Management System to Improve the Performance of the New Student Admission System for Higher Education Anam, M. Khairul; Fitri, Triyani Arita; Zoromi, Fransiskus; Junadhi, Junadhi; Nu'man, Nu'man
JISA(Jurnal Informatika dan Sains) Vol 5, No 2 (2022): JISA(Jurnal Informatika dan Sains)
Publisher : Universitas Trilogi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31326/jisa.v5i2.1443

Abstract

The New Student Admission System (PMB) is the main door or core business of the University and requires a good management system. Every Academic Year STMIK Amik Riau forms a committee to carry out this PMB activity. The PBM committee consists of several parts, namely the promotion section, the registration section and the selection section.  Each section carries out knowledge sharing or knowledge transfer in carrying out its duties. This knowledge sharing is only limited to informal or formal communication through meetings so that the knowledge sharing process has not been carried out optimally. The purpose of this study was (1) to measure the readiness of human resources in the application of knowledge sharing in terms of the dimensions of knowledge, culture, technology and dimensions and (2) to develop knowledge sharing features in the PMB system to support decision making quickly to increase the business value of the institution. The stages used in this KMS were The 10-Step Knowledge Management Roadmap while the evaluation of the application of KMS used the SECI model. The results obtained in this study are a system that helps new PMB officers learn the STMIK Amik Riau PMB system. so that the new PMB officer does not ask the old officer again.
Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah M. Khairul Anam; Bunga Nanti Pikir; Muhammad Bambang Firdaus; Susi Erlinda; Agustin Agustin
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 21 No. 1 (2021)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v21i1.1092

Abstract

Pemerintah Pekanbaru saat ini sudah menerapkan teknologi dalam sistem pemerintahan, penerapannya saat ini masih mendapat keluhan dari masyarakat seperti layanan publik command center yang hanya sebagian masyarakat mengetahuinya dan penerapan cctv yang ada di Alat Pemberi Isyarat Lalu Lintas (APILL) yang belum berfungsi dengan baik. Penerapan teknologi lainnya oleh Pemerintah Pekanbaru dapat kita lihat dari keberadaan portal-portal web situs resmi Pemerintah. Sedangkan untuk melihat beragam komentar netizen dari twitter. Twitter menjadi tempat untuk mendapatkan data yang diungkapkan masyarakat melalui tweets yang diposting ke timeline. Analisa sentimen dilakukan untuk melihat pendapat atau kecenderungan opini netizen terhadap pemerintah Pekanbaru yang mengandung sentimen positif, negatif, dan netral. Data yang digunakan adalah tweet dengan jumlah dataset sebanyak 150 tweets. Data tersebut kemudian di analisa agar menjadi informasi. Analisa dilakukan menggunakan metode data mining yaitu Naïve Bayes Classifier, K-Nearest Neighbor (KNN), dan Decision tree. Penggunaan ketiga pendekatan ini berupaya untuk mengkategorikan hasil komentar netizen terkait penggunaan teknologi yang telah melalui proses analisis sentimen dan membandingkan keakuratan ketiga cara tersebut. Hasil akurasi yang didapatkan cukup beragam yaitu dari metode Naïve Bayes akurasi 100%, metode KKN akurasi 98,25%, dan metode decision tree akurasi 62,28%.
The Application of Usability Testing to Analyze the Quality of Android-Based Acupressure Smart Chair Applications M. Khairul anam; Esi Tri Emerlada; Susi Erlinda; Tashid Tashid; Torkis Nasution
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 22 No. 2 (2023)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v22i2.2312

Abstract

A smart chair is a reflection smart chair that utilizes waste tires as an alternative to acupuncture. Smart chairs are designed for people who are phobic about acupuncture needles by replacing these needles with waste tires. Acupuncture smart chairs also make it easier for users without having to go to the acupuncture practice place. This smart chair is equipped with an application that is directly connected to android. The smart chair application is an android-based remote control where users can control the application remotely. However, this application has not been tested so it is not yet known how effective and efficient the use of the application is. Therefore, researchers would conduct testing by using the usability testing method. The usability testing method is a method carried out to measure the ease of the application that has been made. The analysis in this method used five evaluation components, namely learnability, efficiency, memorability, errors, and satisfaction. This research would make instruments based on usability testing and then distribute instruments to samples by using sampling techniques. The results of this study showed a variable learnability value was 65% while the efficiency variable got a value of 74%. In terms of memorability, its value was 59%, then the Errors variable value was 74%, and the last variable, namely satisfaction, reached a value of 74%.
Co-Authors -, Tashid Abrar Hadi Ade Riyanda Putra Agus Tri Nurhuda Agustin Agustin Agustin Agustin Agusviyanda Agusviyanda Ahmad Ihsan Ahmad Zamsuri Ahmad Zamsuri, Ahmad Aisum Aliyah Sari Akram, Rizalul Al Amin Fadillah Sani Alkadri Masnur Ambiyar, Ambiyar Andesa, Khusaeri Andhika, Imam Andi Supriadi Chan, Andi Supriadi Anwar, Reksi Aprillian Kartino Arba, Muhammad Hendra Arda Yunianta Arda Yunianta Arief Hidayat Arita Fitri, Triyani Arsyah, Ulya Ilhami Atalya Kurnia Sari Atmaja, Teuku Hadi Wibowo Bambang Kurniawan Br.Situmorang, Elisabet Sinta Romaito Budiman, Edy Budiman, Edy Bunga Nanti Pikir Bunga Nanti Pikir Chatarina Umbul Wahyuni Cut, Banta Damar Sanggara Habibie Darma, Adi Surya Daryanto, Diki Dea Safitri Dedy Irfan Devi Yuliana Dewi Sari Wahyuni Dewi, Nina Nurmalia Didik Sudyana Didik Sudyana Diki Daryanto Diky Daryanto Dona Wahyuning Laily Eddy Kurniawan Pradana Efrizoni, Lusiana Elangga Sony Widiharsono Elva, Yesri Emerlada, Esi Tri Erlin Erlin Erlinda, Susi Ersan Fadrial, Yogi Esi Tri Emerlada Fadli Suandi Fahrul Yamani Faisol Mas’ud Fajar Arifandi Fajrizal Fatdha, T.Sy. Eiva Faza Alameka Fernando Elda Pati Fika Felanda Ardelia Firdaus, Muhammad Bambang Fransiskus Zoromi Fransiskus Zoromi Fransiskus Zoromi Fransiskus Zoromi, Fransiskus Fryonanda, Harfebi Fuquh Rahmat Shaleh Gendhy Dwi Harlyan Gubtha Mahendra Putra Gunadi Gunanti Mahasri Gunawan, Chichi Rizka Habibi Ulayya Hadi Asnal, Hadi Hairah, Ummul Halim, Muhammad Yusuf Hamdani Hamdani - Hamdani . Hamdani Hamdani Hamdani Hamdani Hamdani Hamdani Handayani, Nadya Satya Hanif Aulia Happy Yugo Prasetiya Haris Kurniawan, Haris Hartomi, Zupri Henra Hasan J. Alyamani Haviluddin Haviluddin Hazira, Nadila Helda Yeni Helda Yenni, Helda Hendra Saputra Hendrawan, Riki hendri, nofri Herianto Herianto Herwin Herwin Ika Purnamasari Ike Yunia Pasa Ikhsan Ikhsan Indah Mukhlis Tamara Indra Prayogo Indra Prayogo Indri Febrianti Irfan Putra Pratama Irfansyah Irfansyah Irfansyah Irfansyah Irsyad, Akhmad Irwanda Syahputra Irwanda Syahputra Irzal Arief Wisky Istianah Istianah Jamaris, Muhamad Jamaris, Muhammad Jasmarizal Junadhi Junadhi Junadhi Junadhi Junadhi, Junadhi Kadek Mirnawati Karfindo, Karfindo Karpen Kartina Diah K. W. Kharisma Rahayu Khusaeri Andesa Khusaeri Andesa Kresnapati, I Nyoman Bagus Aji Kudadiri, Parlindungan Lathifah Lathifah Lathifah Lathifah Lathifah Lathifah Lathifah Lathifah Lathifah, Lathifah Latifah Lia Oktavia Ika Putri Lilis Cahaya Septiana Liza Fitria Lucky Lhaura Van FC Lucky Lhaura Van FC, Lucky Lhaura Lusiana Lusiana Efrizoni Lusiana Lusiana M Syauqi Hafizh Machdalena Mahamad, Abd Kadir Mahendra, Muhammad Ihza Mahessya, Raja Ayu Mardainis Mardainis Mardainis Martilinda Panjaitan Mega Susanti Mega Susanti Melda Royani Michal Dennis Michel Kasaf Mi`rajul Rifqi Mohamad, Nur Ikhwan Bin Muhaimin, Abdi Muhamad Jamaris Muhamad Sadar Muhamad Sadar, Muhamad Muhammad Bambang F Muhammad Bambang Firdaus Muhammad Bambang Firdaus Muhammad Budi Saputra muhammad Fuad Muhammad Nur Ihwan Muhammad Wisdan Pratama Putra Munawir Munawir Munawir N.A, Randi Nadila Rahmadhani Nadya Alinda Rahmi Nanda, Novianda Nanda Nariza Wanti Wulan Sari Nasrul Sani Neci Nirwanda Nisa, Aida Nora Lizarti Novi Yona Sidratul Munti Nu'man, Nu'man Nurjayadi Nurjayadi Nurjayadi Nurjayadi Nurjayadi Nurjayadi Nurkholifah Dwi Rahayu Nurul fadillah, Nurul Nurul Indriani Nurwijayanti Pandu Pratama Putra, Pandu Pratama Paradila, Dinda Permana, Randy Pradipta , Rahman Pranata, Angga Pratiwi, Mutiana Purwanto Putra, Ryanda Satria Rahmaddeni Rahmaddeni Rahmaddeni Rahmaddeni Rahmi, Nadya Alinda Rahmiati Rahmiati Rahmiati Rebecca La Volla Nyoto Refni Wahyuni Reksi Anwar Rini Yanti Rini Yanti Rini Yanti Rinno Hendika Putra Rio Andika Malik Rivaldi Dwi Andhika Rohana Yola Parastika Hutasoit Rohmat Romadhoni Rometdo Muzawi, Rometdo Ruri Hartika Zain Saiful Bukhori Salman Aldo Alfaresi Salsabila Rabbani Salsabila Rabbani Saon, Sharifah Saputra, Eko Ikhwan Sari Irma Yani Sitorus Sari, Atalya Kurnia Sarjon Defit Silvyana Dwi Putri Sofiansyah Fadli Sofiansyah Fadli Soni Sovia, Rini suaidah suaidah Sumijan Sumijan Susandri, Susandri Susanti Susanti Susanti Susanti Susanti Susanti Susanti, Mega Susanti, Susanti SUSI ERLINDA Susi Erlinda Susi Erlinda Syam, Salmaini Safitri Syamsiar, Syamsiar T. Sy. Eiva Fatdha Taruk, Medi Tashid Tashid Tashid Tatang Hidayat Tejawati, Andi Tengku Alvin Firdaus Teri Ade Putra Tjut Rizqi Maysyarah Hadi Torkis Nasution Tri Putri Lestari Tri Putri Lestari Tri Putri Lestari Tri Putri Lestari, Tri Putri Triyani Arita Fitri Ulfah, Aniq Noviciate Wahyudianto, Mochamad Rizky Wahyuni, Dewi Sari Waksito, Alan Zulfikar Waskita, Ghozi Indra Wifra, Rizki Wirta Agustin Wirta Agustin Woro Hastuti Setyantini Yaakub, Saleh Yansyah Saputra Wijaya Yesaya Twin Situmorang Yogi Ersan Fadrial Yogi Yunefri, Yogi Yoyon Efendi Yuda Irawan Yudhistira, Dewangga Yumami, Eva Zainal Arifin Zeki Kurniadi zeki Kurniadi