p-Index From 2020 - 2025
19.643
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering International Journal of Power Electronics and Drive Systems (IJPEDS) IAES International Journal of Artificial Intelligence (IJ-AI) TEKNIK INFORMATIKA Jurnal Ilmu Pendidikan Tekno : Jurnal Teknologi Elektro dan Kejuruan ELKHA : Jurnal Teknik Elektro Mechatronics, Electrical Power, and Vehicular Technology Jurnal Pendidikan Sains MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Jurnal Informatika Jurnal Infinity Harmonia: Journal of Research and Education Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics Jurnal Sistem Informasi dan Bisnis Cerdas Register: Jurnal Ilmiah Teknologi Sistem Informasi Proceeding of the Electrical Engineering Computer Science and Informatics Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan JOIN (Jurnal Online Informatika) JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Knowledge Engineering and Data Science Jurnal Ilmiah Flash JURNAL MEDIA INFORMATIKA BUDIDARMA Ranah: Jurnal Kajian Bahasa Jurnal Sains dan Informatika Jurnal Inovasi Bisnis (Inovbiz) ILKOM Jurnal Ilmiah at-tamkin: Jurnal Pengabdian kepada Masyarakat SENTIA 2016 SENTIA 2015 Jurnal Teknologi Sistem Informasi dan Aplikasi Journal of Educational Research and Evaluation International Journal of Elementary Education Jurnal Ilmiah Sekolah Dasar Prosiding SAKTI (Seminar Ilmu Komputer dan Teknologi Informasi) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Performance PEDULI: Jurnal Imiah Pengabdian Pada Masyarakat Antivirus : Jurnal Ilmiah Teknik Informatika Kumawula: Jurnal Pengabdian Kepada Masyarakat Buletin Ilmiah Sarjana Teknik Elektro Mobile and Forensics International Journal of Visual and Performing Arts Journal of Robotics and Control (JRC) Jurnal Mnemonic Sains, Aplikasi, Komputasi dan Teknologi Informasi Jurnal Teknik Elektro Uniba (JTE Uniba) Frontier Energy System and Power Engineering Belantika Pendidikan Indonesian Journal of Data and Science Letters in Information Technology Education (LITE) Journal of Applied Data Sciences Science in Information Technology Letters International Journal of Engineering, Science and Information Technology International Journal of Robotics and Control Systems Abditeknika - Jurnal Pengabdian Kepada Masyarakat Anjoro : International Journal of Agriculture and Business Journal of Dinda : Data Science, Information Technology, and Data Analytics Indonesian Community Journal International journal of education and learning Buletin Sistem Informasi dan Teknologi Islam Jurnal Sistem Informasi dan Bisnis Cerdas Applied Engineering and Technology Bulletin of Culinary Art and Hospitality Jurnal Inovasi Teknologi dan Edukasi Teknik Bulletin of Social Informatics Theory and Application Journal of Information Technology and Cyber Security KOPEMAS Jurnal Infinity Advance Sustainable Science, Engineering and Technology (ASSET) Signal and Image Processing Letters
Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Journal of Applied Data Sciences

Mean-Median Smoothing Backpropagation Neural Network to Forecast Unique Visitors Time Series of Electronic Journal Wibawa, Aji Prasetya; Utama, Agung Bella Putra; Lestari, Widya; Saputra, Irzan Tri; Izdihar, Zahra Nabila; Pujianto, Utomo; Haviluddin, Haviluddin; Nafalski, Andrew
Journal of Applied Data Sciences Vol 4, No 3: SEPTEMBER 2023
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v4i3.97

Abstract

Sessions or unique visitors is the number of visitors from one IP who accessed a journal portal for the first time in a certain period of time. The large number of unique daily average subscriber visits to electronic journal pages indicates that this scientific periodical is in high demand. Hence, the number of unique visitors is an important indicator of the accomplishment of an electronic journal as a measure of the dissemination in accelerating the journal accreditation system. Numerous methods can be used for forecasting, one of which is the backpropagation neural network (BPNN). Data quality is very important in building a good BPNN model, because the success of modeling at BPNN is very dependent on input data. One way that can be carried out to improve data quality is by smoothing the data. In this study, the forecasting method for predicting time series data for unique visitors to electronic journals employed three models, respectively BPNN, BPNN with mean smoothing, and BPNN with median smoothing. Based on the findings, the results of the smallest error were obtained by the BPNN model with a mean smoothing with MSE 0.00129 and RMSE 0.03518 with a learning rate of 0.4 on 1-2-1 architecture which can be used as a forecast for unique visitors of electronic journals.
Exploring Visitor Sentiments: A Study of Nusantara Temple Reviews on TripAdvisor Using Machine Learning Hariyono, Hariyono; Wibawa, Aji Prasetya; Noviani, Erina Fika; Lauretta, Giovanny Cyntia; Citra, Hana Rachma; Utama, Agung Bella Putra; Dwiyanto, Felix Andika
Journal of Applied Data Sciences Vol 5, No 2: MAY 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i2.208

Abstract

This study examines the mood of tourist evaluations for the Nusantara Temples, such as Borobudur, Prambanan, Ijo, Plaosan, and Mendut Temples, on TripAdvisor using Stochastic Gradient Descent (SGD), Logistic Regression (LR), and Support Vector Machine (SVM) classification techniques. The study examines the viewpoints and encounters of tourists from different nations on Indonesia's cultural legacy through English-language evaluations. The evaluation findings show that LR achieves the highest performance in sentiment classification, with an accuracy rate of 91.66%. The research offers valuable insights but has limits in portraying local visitors and relies heavily on the English language. Future studies might focus on doing sentiment analysis on more historical tourism sites in Indonesia, integrating multilingual data, and experimenting with novel categorization methods. This study significantly enhances our understanding of how technology and social media impact tourists' impressions of cultural heritage in the digital age via strengthening analytical methodologies and investigating alternative destinations.
Cognition-Based Document Matching Within the Chatbot Modeling Framework Jatmika, Sunu; Patmanthara, Syaad; Wibawa, Aji Prasetya; Kurniawan, Fachrul
Journal of Applied Data Sciences Vol 5, No 2: MAY 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i2.209

Abstract

The aim of the study is to examine cognitive methods for document matching in a chatbot modeling framework by utilizing Euclidean Distance, Cosine Similarity, and BERT methodologies. Five primary indications are used to carry out evaluation in testing: document matching accuracy, document matching execution time, document search efficiency, consistency of document matching results, and the quality of the document representation in the matrix. Document matching accuracy is evaluated by precision; document matching execution time is measured from the beginning to the end of the document matching process; document search efficiency is measured through evaluation of execution time and matching accuracy; the consistency of document matching results is assessed by comparing method results when tested against the same or similar queries and the quality of document representation is assessed based on the method's ability to represent documents in a matrix or vector. The test findings offer a comprehensive understanding of how well the three approaches operate and exhibit their capacity to address the unique requirements of chatbot users. These results may contribute to the advancement of language technology applications, making it possible for chatbots to deliver pertinent information more rapidly and precisely. There are 1,755 labeled question samples in the dataset, which were split up into two sets: 60% for training (1,053 pieces), and 40% for testing (702 samples) to evaluate the model's performance. The test results show the accuracy of the three methods based on five measured evaluation indications, namely Euclidean Distance 0,45%, Cosine similarity 0,59%, and BERT 0,91%.  By comprehending the benefits and drawbacks of each approach, this research strengthens contributions to the growth of chatbot systems to better serve user demands and opens the door for the creation of more complex human-machine interaction solutions.
LSTM-Based Machine Translation for Madurese-Indonesian Sulistyo, Danang Arbian; Wibawa, Aji Prasetya; Prasetya, Didik Dwi; Ahda, Fadhli Almu'iini
Journal of Applied Data Sciences Vol 4, No 3: SEPTEMBER 2023
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v4i3.113

Abstract

Madurese is one of the regional languages in Indonesia, which dominates East Java and Madura Island in particular. The use of Madurese as a daily language has declined significantly due to a language shift in children and adolescents, some of which are caused by a sense of prestige and difficulty in learning Madurese. The scarcity of research or scientific titles that raises the Madurese language also helps reduce literacy in the language. Our research focuses on creating a translation machine for Madurese to Indonesian to maintain and preserve the existence of the Madurese language so that learning can be done through digital media. This study use the latest dataset for the Madurese-Indonesian language by using a corpus of 30,000 Madura-Indonesian sentence pairs from the online Bible. This study scrapped online Bible pages to organize the corpus based on the Indonesian and Madurese bilingual Bible. Then This study manually process text to match the two languages' scrapping results, normalization, and tokenization to remove non-printable characters and punctuation from the corpus. To perform neural machine translation (NMT), This study connected the RNN encoder with the RNN decoder of the language model, while for training and testing, This study used a sequential model with LSTM, while the BLEU measure was used to assess the accuracy of the translation results. This study used the SoftMax optimization function with Adam Optimizer and added some settings, including using 128 layers in the training process and adding a Dropout layer so that This study got the average evaluation result for BLEU-1 is 0.798068, BLEU-2 is 0.680932, BLEU-3 is 0.623489, and for BLEU-4 is 0.523546 from five tests conducted. Given the language differences between Madurese and Indonesian, this can be the best approach for machine translation of Indonesian to Madurese.
Congestion Predictive Modelling on Network Dataset Using Ensemble Deep Learning Purnawansyah, Purnawansyah; Wibawa, Aji Prasetya; Widiyaningtyas, Triyanna; Haviluddin, Haviluddin; Raja, Roesman Ridwan; Darwis, Herdianti; Nafalski, Andrew
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.333

Abstract

Network congestion arises from factors like bandwidth misallocation and increased node density leading to issues such as reduced packet delivery ratios and energy efficiency, increased packet loss and delay, and diminished Quality of Service and Quality of Experience. This study highlights the potential of deep learning and ensemble learning for network congestion analysis, which has been less explored compared to packet-loss based, delay-based, hybrid-based, and machine learning approaches, offering opportunities for advancement through parameter tuning, data labeling, architecture simulation, and activation function experiments, despite challenges posed by the scarcity of labeled data due to the high costs, time, computational resources, and human effort required for labeling. In this paper, we investigate network congestion prediction using deep learning and observe the results individually, as well as analyze ensemble learning outcomes using majority voting, from data that we recorded and clustered using K-Means. We leverage deep learning models including BPNN, CNN, LSTM, and hybrid LSTM-CNN architectures on 12 scenarios formed out of the combination of level datasets, normalization techniques, and number of recommended clusters and the results reveal that ensemble methods, particularly those integrating LSTM and CNN models (LSTM-CNN), consistently outperform individual deep learning models, demonstrating higher accuracy and stability across diverse datasets. Besides that, it is preferably recommended to use the QoS level dataset and the combinations of 3 clusters due to the most consistent evaluation results across different configurations and normalization strategies. The ensemble learning evaluation results show consistently high performance across various metrics, with accuracy, Matthews Correlation Coefficient, and Cohen's Kappa values nearing 100%, indicates excellent predictive capability and agreement. Hamming Loss remains minimal highlighting the low misclassification rates. Notably, this study advances predictive modeling in network management, offering strategies to enhance network efficiency and reliability amidst escalating traffic demands for more sustainable network operations.
Analyzing Audience Sentiments in Digital Comedy: A Study of YouTube Comments Using LSTM Models Supriyono, Supriyono; Wibawa, Aji Prasetya; Suyono, Suyono; Kurniawan, Fachrul
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.393

Abstract

The main objective of this paper is to analyze audience sentiment towards stand-up comedy content on the YouTube platform, specifically comments on stand-up comedy videos from Kompas TV, using the Long Short-Term Memory (LSTM) method. This research contributes significantly to a deeper understanding of how audiences engage with humorous content through a sentiment analysis approach that uses the LSTM model, which can capture complex nuances in humorous content, such as sarcasm, irony, and cultural references. The research methodology involves crawling data from YouTube, where user comments are extracted and processed through several stages of data cleaning, such as removing duplicate content, text normalization, and irrelevant comments. Once the data is prepared, the LSTM model is trained to analyze positive, negative, and neutral sentiments with varying accuracy rates of 85% for positive sentiment, 80% for negative sentiment, and 78% for neutral sentiment. The main results show that the LSTM model successfully classifies sentiments, although it needs help handling the more ambiguous neutral sentiments. The figures and tables included in this study illustrate the relationship between the number of views, likes, and the sentiment classification of the comments. One notable finding is a strong positive correlation between the number of views and video likes. The conclusions of this study underscore the need for model improvements to handle neutral sentiment better and capture the complexity of humor content. The implications of this research are useful for content creators and digital marketers in understanding and responding to audience preferences more effectively. They also pave the way for further research in sentiment analysis on more specific content genres on digital platforms.
Co-Authors A.N. Afandi Abd. Rasyid Syamsuri Abdur Rohman Achmad Fanany Onnilita Gaffar Adaby, Resnu Wahyu Ade Kurnia Ganesh Akbari Aderyan Reynaldi Fahrezza Dewandra Aditya Wahyu Setiawan Adjie Rosyidin Adnan, Adam Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agus Purnomo Ahmad Munjin Nasih Ahmad Naim Che Pee Ahmad Taufiq Aindra, Alifah Diantebes Aji, Bayu Kuncoro Akbari, Ade Kurnia Ganesh Akhimullah Akmal Fattah Akhmad Fanny Fadhilla Akrom Tegar Khomeiny Alfiansyah Putra Pertama Triono Ali, Martina Alifah Diantebes Aindra Amro, Manar Y Anak Agung Istri Sri Wiadnyani Andien Khansa’a Iffat Paramarta Andika Dwiyanto, Felix Andini, Nurul Fajriah Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andri Pranolo Andriansyah, Muhammad Rizal Angeline, Grace Anggreani, Desi Anik Nur Handayani Anton Prafanto Anusua Ghosh Anusua Ghosh, Anusua Ardiansyah, Mohammad Iqbal Firman Aripriharta - Arya Tandy Hermawan Ashar, Muhammad Astuti, Wistiani Atmaja, I Made Ari Dwi Suta Atmaja, Nimas Hadi Ba, Abdoul Fatakhou Bagaskoro, Muhammad Cahyo Bahalwan, Lugas Anegah Baitun Nadhiroh Bambang Widi Pratolo Bella Putra Utama, Agung Betty Masruroh Bety Masruroh Bin Abdul Hadi, Abdul Razak Bin Haji Jait, Adam Cahyo Prayogo, Cahyo Cengiz, Korhan Cholisah Erman Hasihi Chong , Wan Ni Chuttur, Mohammad Yasser Citra Suardi Citra, Hana Rachma Collante, Leonel Hernandez Danang Arengga Wibowo Daniar Wahyu Darwis, Herdianti Dedi Kuswandi Dedy Kuswandi Denis Eka Cahyani Denna Delawanti Chrisyarani, Denna Delawanti Desi Anggreani Dewi, Popy Maulida Dhani Wahyu Wijaya Dhani Wahyu Wijaya Dhaniyar Dhaniyar Didik Dwi Prasetya Didik Nurhadi Didik Suprayogo Dika Fikri L Dityo Kreshna Argeshwara Dityo Kreshna Argeshwara Dwi Jaelani, Mardian dwi yasa, arnelia Dwieb, Mohamed Dwiyanto, Felix Andika Dwiyanto, Felix Andika Dyah Lestari Edinar Valiant Hawali Eka Nurcahya Ningsih Elta Sonalitha Endah Setyo Wardani Erna Daniati Esther Irawati Setiawan Fachrul Kurniawan Fachrul Kurniawan Fachrul Kurniawan Fadhilah, Farhan Fadhilla, Akhmad Fanny Fadhli Almu’iini Ahda Faidzin, Ilham Fajar Purnama Fajarwati, Erliana Faller, Erwin Faradini Usha Setyaputri Farid Miftahuddin Farida Nur Kumala Fauzan Cahya Arifin Fauzy Satrio Wibowo Felix Andika Dwiyanto Felix Andika Dwiyanto Felix Andika Dwiyanto Felix Andika Dwiyanto Ferdinand, Miftakhul Anggita Bima Ferina Ayu Pusparani Filby , Brilliant Filby, Brilliant Fitria, Nimas Dian Fitriana Kurniawati Gianika Roman Sosa Graciello, Manuel Tanbica Gülsün Kurubacak Gunawan Gunawan Gwinny Tirza Rarastri Hammad, Jehad A. H. Hammad, Jehad A.H Hari Putranto Haris Anwar Syafrudie Harits Ar Rasyid Harits Ar Rosyid Hariyono Hariyono Hariyono Hariyono Hariyono Hariyono Hartono, Nickolas Hary Suswanto Hasanuddin, Tasrif Hashim, Ummi Raba’ah Haviluddin Haviluddin Haviluddin, - Hendrawan, William Hartanto Herdianti Darwis Heri Pratikto Herman Herman Herman Thuan To Saurik Heru Nurwarsito Heru Wahyu Herwanto Hery Widijanto Hidayah Kariima Fithri Hidayah, Laily Hidayatul Ma'rifah Hitipeuw, Emanuel Hong, Yeap Chi I Made Wirawan I Nyoman Gede Arya Astawa Idris Ilham Mulya Putra Pradana Imansyah, Pranadya Bagus Imro’aturrozaniyah, Imro’aturrozaniyah Inggar Tri Agustin Mawarni Irsyada, Rahmat Islami, Pio Arfianova Fitrizky Islami, Pio Arfianova Fitrizky Islami, Pio Arfianova Fitrizky Ismail, Amelia Ritahani Istiqlal, Adib Izdihar, Zahra Nabila Jehad A. H. Hammad Jehad A.H. Hammad Jevri Tri Ardiansah Junoh, Ahmad Kadri Juwita Annisa Fauzi Juwita Annisa Fauzi Kaki, Gregorius Paulus Mario Laka Kasturi Kanchymalay, Kasturi Kelvin Wong Khafit Badrus Zaman Khen Dedes Khoiruddin Asfanie Khurin Nabila Kirya Mateeke Moses Kohei Arai Kurniawan, Fachrul Kurniawati, Fitriana Kuswandi, Dedy Laily Hidayah Langlang Gumilar Lauretta, Giovanny Cyntia Lazuardi Noorca Rachmadi Leonel Hernandez Leonel Hernandez Leonel Hernandez Leonel Hernandez, Leonel Lestari, Muqodimah Nur Lestari, Muqodimah Nur Lestari, Muqodimah Nur Liang, Yoeh Wen Lisa Ramadhani Harianti Lisa Ramadhani Harianti Ludovikus Boman Wadu Luther Latumakulita M. Alfian Mizar M. Zainal Arifin Mansoor Abdul Hamid Mantony, Oslida Mao, Yingchi Marchena, Piedad Marida, Tyas Agung Cahyaning Marji Marji Markus Diantoro Masruroh, Bety Mazarina Devi Meiga Ayu Ariyanti Mhd. Irvan, Mhd. Irvan Mifta Dewayani Miftahul Qiki Winata Ming F. Teng Ming Foey Teng Ming Foey Teng, Ming Foey Mochamad Hariadi Moh. Zainul Falah Mohamad Rodhi Faiz Mokh Sholihul Hadi Moses, Kirya Mateeke Moses, Kirya Mateeke Moses, Kirya Mateeke Mudakir, Mudakir Muh. Aliyazid Mude Muhamad Arifin Muhammad Busthomi Arviansyah Muhammad Ferdyan Syach Muhammad Firman Aji Saputra Muhammad Iqbal Akbar Muhammad Jauharul Fuadi Muhammad Nu’man Hakim Muhammad, Abdullahi Uwaisu Muladi Munir Munir Muntholib Muqodimah Nur Lestari Mursyit, Mohammad Nabila Izdihar, Zahra Nabila, Khurin Nada, Anita Qotrun Nadhiroh, Baitun Nadia Roosmalita Sari Nadia Roosmalita Sari Nafalski, Andrew Nastiti Susetyo Fanany Putri Naufal, Ayyub Naziro Nedic, Zorica Nida Jabari Ningsih, Eka Nurcahya Ningtyas, Yana Noorul Islam Novia Ratnasari Novian Candra Kurniawan Noviani, Erina Fika Nugraha, Agil Zaidan Nur Cahyo Wibowo Nur Hidayatullah Nurhalifah, Siti Nurroby Wahyu Saputra Nurul Falah Hashim Nurul Hidayat Oakley, Simon Okazaki Yasuhisa Oki Dwi Yuliana Omar, Saodah Osamu Fukuda Pakpahan, Herman Santoso Paramarta, Andien Khansa’a Iffat Paul Igunda Machumu Pio Arfianova Fitrizky Islami Piska Dwi Nurfadila Praherdhiono, Hendy Prananda Anugrah Prasojo, Fadillah Pratama, Awanda Setya Sanfajar Puji Santoso Puji Santoso Puji Santoso Punaji Setyosari Pundhi Yuliawati Pundhi Yuliawati Purnawansyah Purnawansyah Purnomo Purnomo Purnomo Purnomo Purwatiningsih, Ayu Putra Utama, Agung Bella Putri Syarifa, Dhea Fanny Putri, Desy Pratiwi Ika Putri, Fadia Irsania Putri, Nastiti Susetyo Fanany Qonita, Adiba Rahiddin, Rahillda Nadhirah Norizzaty Rahmadhani, Nur Aini Syafrina Raja, Roesman Ridwan Ratnasari, Novia Rendy Yani Susanto Resty Wulanningrum Ridho, Faiz Mohammad Ridwan Shalahuddin Ridwan Shalahuddin Riri Nada Devita Riri Nada Devita Rizal Kholif Nurrohman Rizqini, Fajriwati Qoyyum Roni Herdianto Rosmin, Norzanah Rr. Poppy Puspitasari, Rr. Poppy Rully Charitas Indra Prahmana Ruth Ema Febrita Salahuddin, Lizawati Salsabila, Reni Fatrisna Santoso, Priyo Aji Saputra, Irzan Tri Sari, Nadia Roosmalita Sarni Suhaila Rahim Seno Isbiyantoro Setiawan, Ariyono Setyadi, Hario Jati Setyaputri, Faradini Usha Setyawan P. Sakti Shahrul, Azzhan Shalahuddin, Ridwan Shiddiqy, Jabar Ash Shidiqi, Maulana Ahmad As Shili, Hechmi Sias, Quota Alief Simbolon, Triyanti Sisca Rahmadonna Siti Helmyati Siti Sendari Soenar Soekopitojo Soraya Norma Mustika Sri Rahmawati Stamen Gadzhanov Subadra, ST. Ulfawanti Intan Sucahyo, Cornaldo Beliarding Sugiarto Cokrowibowo Sugiyanto - Suhiro Wongso Susilo Sujito Sujito Sulistyo, Danang Arbian Sunu Jatmika, Sunu Supeno Mardi Susiki Nugroho, Supeno Mardi Supriadi Supriadi Supriyono Supriyono Suryani, Ani Wilujeng Susilo, Suhiro Wongso Suyono Suyono Suyono Suyono Syaad Patmantara Syaad Patmanthara Syabani, Muhiban Tantri Hari Mukti Tasrif Hasanuddin Trahutomo, Dinnuhoni Tri Kuncoro Tri Lathif Mardi Suryanto Tri Lathif Mardi Suryanto Tri Saputra, Irzan Tri Sutanti Tri Sutanti, Tri Triono, Alfiansyah Putra Pertama Triyanna Widiyaningtyas Triyanna Widyaningtyas Triyanna Widyaningtyas, Triyanna Tsukasa Hirashima Tuatul Mahfud Ummi Rabaah Hasyim Uriu, Wako Utama , Agung Bella Putra Utama, Agung Bella Putra Utomo Pujianto Vira Setia Ningrum Vira Setia Ningrum Vitrail Gloria Mairi Voliansky, Roman Wadu, Ludovikus Boman Wahyu Arbianda Yudha Pratama Wahyu Sakti Gunawan Irianto Wahyu Tri Handoko Wako Uriu Wardani, Endah Setyo Wayan Firdaus Mahmudy Wibowo, Nur Cahyo Widiharso, Prasetya Widiyanintyas, Triyanna Yandratama, Hengky Yasa, Arnelia Dwi Yingchi Mao Yongen Susman Yosi Kristian Yuliana, Oki Dwi Yuliawati, Pundhi Yuni Rahmawati Yusmanto, Yunan Zaeni, Ilham Ari Elbaith Zhou, Xiaofeng Zulkham Umar Rosyidin Zulkham Umar Rosyidin