p-Index From 2021 - 2026
29.181
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IJCCS (Indonesian Journal of Computing and Cybernetics Systems) TEKNIK INFORMATIKA Jurnal Informatika Dinamik Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi AMIKOM ICT AWARD 2010 Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris Jurnal Buana Informatika Jurnal Sarjana Teknik Informatika Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Dinamika Informatika Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika) Jurnal technoscientia Jurnal Teknologi Jurnal Pseudocode Jurnal Teknologi Informasi dan Ilmu Komputer Telematika Jurnal Edukasi dan Penelitian Informatika (JEPIN) Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto) JUITA : Jurnal Informatika Proceedings Konferensi Nasional Sistem dan Informatika (KNS&I) Seminar Nasional Informatika (SEMNASIF) CESS (Journal of Computer Engineering, System and Science) Proceeding SENDI_U Jurnal IPTEK-KOM (Jurnal Ilmu Pengetahuan dan Teknologi Komunikasi) Jurnal Inspiration KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Proceeding of the Electrical Engineering Computer Science and Informatics PROtek : Jurnal Ilmiah Teknik Elektro Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Creative Information Technology Journal AT-Tahdzib: Jurnal Studi Islam dan Muamalah SISFOTENIKA IJCIT (Indonesian Journal on Computer and Information Technology) Jurnal Ilmiah Universitas Batanghari Jambi INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi JIKO (Jurnal Informatika dan Komputer) JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Pilar Nusa Mandiri Syntax Literate: Jurnal Ilmiah Indonesia CogITo Smart Journal InComTech: Jurnal Telekomunikasi dan Komputer Insect (Informatics and Security) : Jurnal Teknik Informatika Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING Jurnal Komtika (Komputasi dan Informatika) JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal Informatika Universitas Pamulang Applied Information System and Management Jurnal Sinergitas PkM & CSR Jurnal Sisfokom (Sistem Informasi dan Komputer) ILKOM Jurnal Ilmiah RESEARCH : Computer, Information System & Technology Management INTECOMS: Journal of Information Technology and Computer Science JurTI (JURNAL TEKNOLOGI INFORMASI) Angkasa: Jurnal Ilmiah Bidang Teknologi Jiko (Jurnal Informatika dan komputer) MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer CYBERNETICS Digital Zone: Jurnal Teknologi Informasi dan Komunikasi J-SAKTI (Jurnal Sains Komputer dan Informatika) Journal on Education JURTEKSI Jurnal Informasi dan Komputer Multitek Indonesia : Jurnal Ilmiah Indonesian Journal of Applied Informatics Jurnal Manajemen Informatika Jambura Journal of Informatics JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) EXPLORE ComTech: Computer, Mathematics and Engineering Applications CSRID (Computer Science Research and Its Development Journal) Jurnal Ilmiah Sinus Informasi Interaktif Majalah Ilmiah Bahari Jogja CCIT (Creative Communication and Innovative Technology) Journal EDUMATIC: Jurnal Pendidikan Informatika Jurnal Abdimas PHB : Jurnal Pengabdian Masyarakat Progresif Humanis Brainstorming M A T H L I N E : Jurnal Matematika dan Pendidikan Matematika TAFAQQUH: Jurnal Hukum Ekonomi Syariah Dan Ahwal Syahsiyah Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Technologia: Jurnal Ilmiah JURNAL TAHURI SENSITEK E-JURNAL JUSITI : Jurnal Sistem Informasi dan Teknologi Informasi Aisyah Journal of Informatics and Electrical Engineering Jurnal Manajemen Informatika dan Sistem Informasi Journal of Information Systems and Informatics TAJDID KURVATEK Jurnal Teknologi Informasi : Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika Jurnal Tecnoscienza Respati IT (INFORMATIC TECHNIQUE) JOURNAL JOURNAL OF INFORMATION SYSTEM MANAGEMENT (JOISM) Journal of Intelligent Decision Support System (IDSS) G-Tech : Jurnal Teknologi Terapan SOSIOEDUKASI : JURNAL ILMIAH ILMU PENDIDIKAN DAN SOSIAL International Journal of Advances in Data and Information Systems Jurnal Sistem Komputer dan Informatika (JSON) Journal of Innovation Information Technology and Application (JINITA) Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Bulletin of Computer Science and Electrical Engineering (BCSEE) Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration Jurnal TIKOMSIN (Teknologi Informasi dan Komunikasi Sinar Nusantara) TEPIAN Infokes : Jurnal Ilmiah Rekam Medis dan Informasi Kesehatan JURNAL TEKNOLOGI TECHNOSCIENTIA Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia Journal of Electrical Engineering and Computer (JEECOM) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Mitra Mahajana: Jurnal Pengabdian Masyarakat Jurnal Pendidikan dan Teknologi Indonesia International Journal of Computer and Information System (IJCIS) Jurnal Informatika dan Teknologi Komputer ( J-ICOM) International Research on Big-data and Computer Technology (IRobot) Bulletin of Computer Science Research INFOSYS (INFORMATION SYSTEM) JOURNAL J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen International Journal of Informatics, Information System and Computer Engineering (INJIISCOM) International Journal of Research and Applied Technology (INJURATECH) Jurnal Ekonomi dan Teknik Informatika International Journal Artificial Intelligent and Informatics Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi Jurnal Dinamika Informatika (JDI) Jurnal Nasional Teknik Elektro dan Teknologi Informasi sudo Jurnal Teknik Informatika Jurnal Informatika Teknologi dan Sains (Jinteks) Duta.com : Jurnal Ilmiah Teknologi Informasi dan Komunikasi Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram EXPLORE Journal of Comprehensive Science Techno Indonesian Journal Computer Science (ijcs) Jurnal Educative: Journal of Educational Studies Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer JURNAL TEKNIK INDUSTRI Jurnal Pendidikan Indonesia (Japendi) Cerdika: Jurnal Ilmiah Indonesia International Journal of Advanced Science Computing and Engineering Innovative: Journal Of Social Science Research J-Icon : Jurnal Komputer dan Informatika Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) SmartComp Fahma : Jurnal Informatika Komputer, Bisnis dan Manajemen Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Teknomatika: Jurnal Informatika dan Komputer Proceeding of International Conference on Information Science and Technology Innovation (ICoSTEC) Tafaqquh : Jurnal Hukum Ekonomi Syariah dan Ahwal Syahsiyah Explore The Indonesian Journal of Computer Science Scientific Journal of Informatics Jurnal Teknologi KOPEMAS International Journal of Information Engineering and Science At-Tahdzib: Jurnal Studi Islam dan Muamalah semanTIK JESICA Jurnal Sistem Informasi Komputer dan Teknologi Informasi JuTISI (Jurnal Teknik Informatika dan Sistem Informasi) Journal of Business, Social, Management, and Technology Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

IMPLEMENTASI METODE EKSTRAKSI FITUR BERBASIS WORD EMBEDDING DAN TF-IDF PADA ALGORITMA RANDOM FOREST UNTUK KLASIFIKASI KATEGORI BERITA ONLINE Afif, Muhammad Sholih; Utami, Ema; Yaqin, Ainul
KLIK- KUMPULAN JURNAL ILMU KOMPUTER Vol 11, No 2 (2024)
Publisher : Lambung Mangkurat University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/klik.v11i2.675

Abstract

Saat ini, klasifikasi kategori berita online hanya dikerjakan oleh petugas platform berita online yang dibantu oleh editor konten berita. Proses pemisahan artikel berita ke dalam kategori yang berbeda masih banyak dilakukan secara manual oleh operator, tanpa bantuan sistem atau algoritma otomatis. Ketika jumlah berita yang dikelola terus meningkat, pengelola dan editor portal dapat menghadapi tantangan yang lebih besar. Untuk mengatasi tantangan ini, diperlukan adopsi teknologi yang mampu menyederhanakan proses ini, yaitu text mining. Penelitian ini bertujuan untuk melakukan uji coba dan perbandingan antara metode ekstraksi fitur berbasis word embedding dan TF-IDF pada model RANDOM FOREST untuk mengevaluasi dan membandingkan akurasi, recall, dan preisisi dari kedua metode tersebut.
Analisa Perbandingan Stemming Dokumen Teks Berbahasa Jawa dengan Algoritma Levenshtein Distance Dan Jaro-Winkler Suryono, Wachid Daga; Utami, Ema; Ariatmanto, Dhani
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 10, No 1 (2025)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v10i1.6092

Abstract

Bahasa Jawa merupakan salah satu bahasa yang paling banyak digunakan di Indonesia, namun penelitian terkait bahasa Jawa dalam bidang informatika masih terbilang terbatas. Penelitian ini bertujuan untuk membandingkan kinerja algoritma Levenshtein Distance dan Jaro-Winkler dalam proses stemming dokumen teks berbahasa Jawa. Stemming adalah proses penting untuk pemrosesan teks yang bertujuan untuk mengubah kata-kata menjadi bentuk dasarnya. Bahasa Jawa memiliki tantangan tersendiri karena keterbatasan sumber daya. Dalam penelitian ini, kami menggunakan dataset dokumen teks bahasa Jawa yang telah melalui tahap pre-processing sebelumnya serta kamus bahasa Jawa sebagai acuan. Kedua algoritma diterapkan untuk melakukan stemming pada dokumen teks, dan hasilnya dievaluasi berdasarkan akurasi. Hasil penelitian menunjukkan bahwa rata-rata akurasi keduanya adalah 43%. Penelitian ini memberikan kontribusi dalam pengembangan algoritma stemming bahasa Jawa dan dapat menjadi landasan untuk penelitian lebih lanjut dalam meningkatkan kinerja stemming bahasa Jawa. Selain itu, penelitian ini juga memberikan wawasan baru dalam pemrosesan teks berbahasa Jawa yang dapat bermanfaat dalam berbagai aplikasi NLP dan pengolahan bahasa alami lainnya
Comparing Algorithms in Sentiment Analysis on DUKCAPIL App Reviews on Playstore Using Ensemble Learning Methods Putu Putrayasa; Ema Utami; Robert Marco
G-Tech: Jurnal Teknologi Terapan Vol 9 No 1 (2025): G-Tech, Vol. 9 No. 1 January 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/gtech.v9i1.6020

Abstract

The development of information and communication technology has significantly influenced public services, particularly through the adoption of mobile applications like DUKCAPIL, which simplifies access to population administration services. This study aims to analyze sentiment regarding the application by employing ensemble learning techniques and the SMOTE method to address data imbalance. The Extra Trees algorithm is compared against nine other algorithms, including Random Forest, Gradient Boosting, and LSTM. Extra Trees achieves the highest accuracy of 95.29% and outperforms in precision, recall, and F1-score. Deep learning models showed improved accuracy from 76.34% in the initial epoch to 91.56% in the final epoch. XGBoost and Random Forest also demonstrated strong performances, with accuracies of 90.55% and 92.66%, respectively. The results underline the superiority of Extra Trees in terms of stability and accuracy while highlighting the potential of deep learning for model enhancement. These findings provide valuable insights for the development of mobile application-based public services.
COMPARATIVE ANALYSIS TO PREDICT READING LITERACY BASED ON PISA 2022 USING GRADIENT BOOSTED DECISION TREES AND EXTREME GRADIENT BOOSTING Hary Susanto; Ema Utami
G-Tech: Jurnal Teknologi Terapan Vol 9 No 1 (2025): G-Tech, Vol. 9 No. 1 January 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/gtech.v9i1.6257

Abstract

Reading is a fundamental skill essential for interdisciplinary understanding and serves as a crucial indikator of a nation’s educational quality. PISA provides an international evaluation of students' reading literacy across various countries, including Indonesia. This study compares the performance of Gradient Boosting Decision Trees (GBDT) and Extreme Gradient Boosting (XGBoost), two widely recognized machine learning algorithms for predicting reading literacy, utilizing PISA 2022 data from 12.853 Indonesian students and 59 variables from the Student Questionnaire Data File. GBDT achieved R² of 0.5106, with optimal parameters (n_estimators = 150, learning_rate = 0.2, max_depth = 3, subsample = 0.9). XGBoost reached a higher R² of 0.5247, with parameters (n_estimators = 1000, learning_rate = 0.01, max_depth = 7, colsample_bytree = 0.3, min_child_weight = 20, gamma = 1, alpha = 0), indicating XGBoost's superior performance in predicting reading literacy. Further analysis revealed that the most significant variables in the GBDT model included students' access to technology at home, extracurricular creative activities, socioeconomic status, school involvement in sustainable development, and problem-solving skills. In contrast, significant variables in the XGBoost model included family support, socioeconomic status, school belongingness, family environment's effectiveness in fostering creativity, and student imagination.
SENTIMENT ANALYSIS OF INDONESIA'S CAPITAL RELOCATION USING WORD2VEC AND LONG SHORT-TERM MEMORY METHOD Yanti, Irma; Utami, Ema
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 1 (2025): JUTIF Volume 6, Number 1, February 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.1.2712

Abstract

The relocation of the national capital (IKN) has garnered public attention, triggering various reactions and sentiments among the community. Sentiment analysis is crucial for understanding public perceptions of an issue, particularly on social media platforms like Twitter and YouTube. This study's sentiment analysis employs Word2Vec parameters, including architecture and dimensions. Additionally, hyperparameters such as the Optimizer and activation functions are applied to the Long Short-Term Memory (LSTM) model to analyze their effect on sentiment classification performance related to the IKN relocation. The study aims to compare the influence of Word2Vec parameters on LSTM model hyperparameter performance in sentiment classification. Data on the IKN relocation were gathered from tweets and YouTube video comments, then processed to form a text corpus used to train the Word2Vec model with Skip-gram and Continuous Bag-of-Words (CBOW) architectures, utilizing different dimension sizes (100 and 300) to enhance word representation in vectors. After obtaining word representations, the LSTM model was applied to classify sentiments using hyperparameters such as activation functions (ReLU, Sigmoid, and Tanh) and two Optimizers (Adam and RMSProp). The results indicate that the Skip-gram architecture tends to yield higher accuracy compared to CBOW, particularly with larger vector dimensions (300), which generally improved model accuracy, especially when using the RMSProp Optimizer and ReLU activation function, achieving an accuracy of 91%. It can be concluded that dimension values and architecture in Word2Vec, as well as the use of Optimizer and activation functions in LSTM, significantly impact model performance.
Combining Bi-LSTM And Word2vec Embedding For Sentiment Analysis Models Of Application User Reviews Verra Budhi Lestari; Ema Utami; Hanafi
The Indonesian Journal of Computer Science Vol. 13 No. 1 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i1.3647

Abstract

Tujuan analisis sentimen aplikasi dan produk adalah untuk menentukan polaritas sentimen dalam ulasan aplikasi berdasarkan umpan balik pengguna. Model LSTM dan turunannya, seperti GRU, menjadi semakin populer di antara berbagai desain Jaringan Neural yang digunakan dalam analisis sentimen. Namun, model LSTM masih memiliki masalah terkait lambatnya konvergensi dan hanya dapat mengumpulkan data dalam satu arah, sehingga untuk meningkatkan kinerja, teknik pembelajaran mendalam lainnya seperti Bi-LSTM harus digunakan. Selain itu, kombinasi penyematan kata dapat dipertimbangkan untuk menghasilkan variasi representasi kata yang semakin besar. Penelitian ini menyajikan perbandingan model LSTM dan BiLSTM untuk mengetahui apakah kinerja kombinasi model BiLSTM dengan penerapan word embedding mampu memiliki kinerja yang lebih baik dibandingkan model LSTM satu arah. Hasil pengujian akurasi menunjukkan model BiLSTM dengan Word2Vec mendapatkan hasil pengujian akurasi tertinggi, dengan akurasi sebesar 87%. Hal ini membuktikan bahwa model BiLSTM dengan Word2Vec mampu memiliki performa yang lebih baik dibandingkan LSTM.
Guava Disease Detection and Classification: A Systematic Literature Review Kurniawan, Muhammad Bayu; Utami, Ema
Telematika Vol 18, No 1: February (2025)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v18i1.2901

Abstract

Guavas (Psidium guajava) are nutrient-rich fruits that provide significant health benefits. However, guava cultivation faces persistent threats from various diseases affecting both leaves and fruits, leading to substantial yield and quality losses. The early and accurate detection of these diseases is crucial but remains challenging due to economic constraints and limited infrastructure. While plant pathologists employ various diagnostic methods, these approaches are often time-consuming, costly, and sometimes inconsistent. Recent advancements in deep learning (DL) and machine learning (ML) have introduced innovative techniques for guava disease identification. This study conducts a Systematic Literature Review (SLR) to evaluate the existing research on guava leaf and fruit disease detection, focusing on dataset sources, identified disease categories, preprocessing and augmentation techniques, applied algorithms, and reported evaluation metrics. A comprehensive search was conducted across multiple databases, covering publications from 2017 to 2023, leading to the identification of 47 relevant studies. After applying exclusion criteria, 16 studies were selected for in-depth analysis. The findings highlight the most commonly used datasets, the predominant classification techniques, and the effectiveness of various deep learning models based on multiple performance metrics, providing insights into current research trends, existing limitations, and potential directions for future studies. This review serves as a valuable reference for researchers aiming to enhance the accuracy and efficiency of guava leaf and fruit disease diagnosis through data-driven approaches.
Studi Komparasi Metode SVM dan Naive Bayes pada Data Bencana Banjir di Indonesia Abdullah, Riska K; Utami, Ema
JURNAL TECNOSCIENZA Vol. 3 No. 1 (2018): TECNOSCIENZA
Publisher : JURNAL TECNOSCIENZA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51158/zdjp6p17

Abstract

Studi Komparasi Metode SVM dan Naive Bayes Pada Data Bencana Banjir di Indonesia bertujuan untuk mendapatkan dataset clean yang berisi bencana banjir lengkap dengan atribut cuaca. Pada dataset tersebut kemudian diimplementasikan model klasifikasi SVM dan Naive Bayes. Proses ini dilakukan agar performa antara SVM dan Naive Bayes dapat terlihat dan bisa dinilai mana yang lebih baik ketika diterapkan pada data bencana banjir di Indonesia. Penelitian dibagi menjadi tiga tahap utama, tahap pertama yaitu proses ekstraksi dataset. Proses tersebut bertujuan untuk mendapatkan dataset yang clean. Proses tersebut dilaksanakan dengan penerapan teknik data mining untuk menyatukan data cuaca dan data bencana alam berdasarkan tanggal dan lokasi kejadian. Tahap kedua yaitu proses implementasi klasifikasi, dan tahap terakhir yaitu proses capturing performa dari kedua model. Pada tahap terakhir pengukuran performa dari kedua model (SVM dan Naive Bayes) didapatkan dari Perhitungan akurasi dengan memanfaatkan confusion matrix, analisa ROC, kemudian parameter perbandingan selanjutnya yaitu waktu eksekusi. Hasil dari penelitian menunjukkan persentase Nilai akurasi rata-rata dari model SVM sebesar 48,90% sedangkan nilai akurasi dari Naive Bayes sebesar 64,70%. Sementara itu untuk masing-masing runtime SVM kurang lebih sebesar 720 mili detik dan naive bayes kurang lebih 280 mili detik. Dapat disimpulkan bahwa metode Naive Bayes lebih baik performanya dibandingkan dengan metode SVM ketika kedua metode tersebut diterapkan pada dataset yang sama yaitu dataset bencana banjir di Indonesia. Begitu pun dengan runtime, Naive Bayes masih lebih unggul karena memiliki waktu yang lebih singkat dalam proses trainning dan testing dibandingkan dengan SVM. Kata kunci: svm, naïve bayes, comparative, classification
Performance Comparison of ResNet50, VGG16, and MobileNetV2 for Brain Tumor Classification on MRI Images Kurniawan, Muhammad Bayu; Utami, Ema
Sistemasi: Jurnal Sistem Informasi Vol 14, No 2 (2025): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v14i2.5054

Abstract

Brain tumor classification using MRI images is a significant challenge in medical diagnosis, requiring models with high accuracy and efficient training. This study aims to compare the performance of three Convolutional Neural Network (CNN) models—ResNet50, VGG16, and MobileNetV2—for brain tumor classification based on MRI images. The dataset consists of four brain tumor categories: glioma, meningioma, pituitary, and no tumor, with data split into training, validation, and testing sets. Each model was evaluated using metrics including accuracy, precision, recall, F1-score, specificity, and training time to assess their effectiveness in predicting brain tumors with optimal accuracy and efficiency. Experimental results indicate that VGG16 achieved the best overall performance, with an accuracy of 94.93%, precision of 94.68%, and specificity of 98.33%, while also having the shortest training time of 47.15 minutes. MobileNetV2 demonstrated strong performance with a recall of 94.08% but required a longer training time of 79.53 minutes. ResNet50 recorded the lowest accuracy (91.67%) despite excelling in precision (91.79%), but it underperformed in recall (91.25%) and specificity (97.2%). Overall, this study confirms that VGG16 is the most efficient and effective model for MRI-based brain tumor classification.
Predicting Students' Academic Performance in Mathematics based on Big Five Personality Traits using Random Forest with Synthetic Minority Over-Sampling Technique Nurul Pratiwi, Annisa; Utami, Ema
Sistemasi: Jurnal Sistem Informasi Vol 14, No 2 (2025): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v14i2.5102

Abstract

The secondary school period is a crucial time for the development of students' academic and social performance. Educational data mining (EDM) has emerged as a strategic method capable of exploring patterns in educational data to predict academic performance based on various factors, including students' personalities. However, the imbalance in educational data remains an issue that can lead to bias in predictive models. This study aims to identify the factors contributing to the academic performance in mathematics of junior high school students, such as academic, demographic, and Big Five personality factors. The Random Forest method and SMOTE oversampling technique are employed to identify components that contribute to students' academic performance and to enhance the performance of the predictive model. The research indicates that academic factors are significant, while socio-economic and personality factors are less significant in relation to academic performance. Additionally, the application of the SMOTE technique proves effective in addressing data imbalance, and the Random Forest model demonstrates optimal performance with appropriate tuning. The combination of Random Forest, hyperparameter tuning using GridSearchCV, and SMOTE successfully develops a model with an accuracy rate of 99%.
Co-Authors , Anggit Dwi Hartanto A.A. Ketut Agung Cahyawan W AA Sudharmawan, AA Abdul Malik Zuhdi Abdullah Ardi Abdullah, Riska K Abdulrahmat E Ahmad Abyan Fauzi Widihasani Achmad Yusron Arif Ade Pujianto Adi Surya Adiatma, Biva Candra Lutfi Adipradana, Candra Afif, Muhammad Sholih Afifah Nur Aini Afis Julianto Aflahah Apriliyani Afu Ichsan Pradana Agun Nurul Widiyanto Agung Budi Prasetio Agung Budi Prasetio Agung Budi Prasetio Agung Budi Prasetyo Agung Dwi Cahyanto Agung Susanto Agus Fathurahman Agus Fatkhurohman AGUS PURWANTO Agustin, Tinuk Agustina Srirahayu Agustina, Nova Ahmad Fauzi Ahmad Febri Diansyah Ahmad Fikri Iskandar Ahmad Fikri Iskandar Ahmad Fikri Iskandar Ahmad Hajar Ahsan, Muhammad Rafiqudin Ahsan, Muhammad Rafiqudin Ain, Quratul Ainul Yaqin Ainul Yaqin Ainul Yaqin Aji Said Wahyudi Hidayat Akhmad Dahlan Al Fathir As, Rahmat Saudi Aldy A Kulakat Alfansani, Abdul Rauf Alfin Mahadi Alimuddin Yasin Alin, Octhavia Almi Yulistia Alwanda Alqowiy, Mohd Qorib Alsyaibani, Omar Muhammad Altoumi Alva Hendi Muhammad Alva Hendi Muhammad Alva Hendi Muhammad Alvhinia Meinda Amitaba Alvian Trias Kurniawan Alvian Trias Kurniawan Alvina Felicia Watratan Amir Fatah Sofyan Amir, Fail Amrullah, Ahmad Afief Amrullah, Ahmad Afief Amrullah, Yusuf Amri Andang Wijanarko Andhika Wisnu Widyatama Andhika Wisnu Widyatama Andi Sunyoto Andrie Prajanueri Kristianto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto, Anggit Dwi Anggit Hartanto Anggriandi, Dendi Anip Moniva Anisa Rahmanti Anisya Nursyah Gusman Anjar Setiawan Annisa Rahayu P Antara, Pebri Anwar Sadad Ardi, Abdullah Arfian Hendro Priyono Arham Rahim Ari Rudiyan Arief Setyanto Arief, M.Rudyanto Arif Nur Rohman Arif Rahman Arif Santoso Arif Sutikno Arif, Achmad Yusron Aris Setiyadi aristin chusnul khotimah Arli Aditya Parikesit Armadiyah Amborowaty Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Arvi Pramudyantoro Arya Luthfi Mahadika Asrawi, Hannan Asro Nasiri Asro Nasiri Asro Nasiri Asro Nasiri Asro Nasiri Asrul Abdullah Astica, Yustikamasy Atin Hasanah Aziza Devita Indraswari Bambang Sumantri, R Bagus Bangun Watono Banu Dwi Putranto Basri, Nur Faizal Bayu Setiaji Béjar, Rodrigo Martínez Betri, Tigus Juni Bety Wulan Sari Bima Widianto Bisono, Hadi Hikmadyo Biva Candra Lutfi Adiatma Bonifacius Vicky Indriyono Bonifacius Vicky Indriyono, Bonifacius Vicky Brahmantha, Gede Putra Aditya Budi, Agung Prasetio Buyut Khoirul Umri Cahya Pangestu, Galang Candra Adipradana Candra Aditya Pinuyut Carolina, Vinnesa Patricia Catur Iswahyudi Catur Iswahyudi Catur Riyono Heri Wibowo Cecep Yedi Permana Chan Uswatun Khasanah Chavid Syukri Fatoni Christina Andriyani Constantin Menteng D. Diffran Nur Cahyo Dalillah Razan S Danar Putra Pamungkas, Danar Putra Dandi Sunardi Dany Fajar Kristanto Saputro Wibowo David Agustriawan Dede Sandi Dedy Ikhsan Dedy Sugiarto Deny Nugroho Triwibowo Dewi Yustika Lakoro Dhana Aulia Ayu Kurniawan Dhanar Intan Surya Saputra Dhani Ariatmanto DHANI ARIATMANTO Dhani Ratna Sari Dhani Ratna Sari, Dhani Ratna Dibyo Sudarsono Dimaz Arno Prasetio Dina Juni Marianti Dloifur Rohman Al Ghifari Donni Prabowo Donny Yulianto Dwi Ahmad Dzulhijjah Dwi Hartanto, Anggit Dwi Hartono, Anggit Dwi Rahayu Dwi Yuli Prasetyo Edhy Sutanta (Jurusan Teknik Informatika IST AKPRIND Yogyakarta) Edi, Mohammad Eko Boedijanto, Eko Eko Darmanto Eko Pramono Eko Pramono Eko Pramono Eko Pramono Eko Purwanto Elim, Marthinus Ikun Elvis Pawan Elvis Pawan Emha T. Luthfi Emha T. Luthfi, Emha T. Emha Taufik Lutfi Emha Taufiq Lutfi Emha Taufiq Lutfi, Emha Taufiq Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emilya Ully Artha Emilya Ully Artha Enie Yuliani Enni Lindrawati Erwin Syahrudin Esha Alma'arif Fachruddin Edi Nugroho Saputro Fahmi Ilmawan Fahry, Fahry Fail Amir Faisal Fadhila Fajar Ardanu Fajar Rohman Hariri Fajar Surya Putro Farid Fitriadi Fariz Zakaria Fathoni Dwiatmoko Fatoni, Chavid Syukri Fendi Sumanto Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Fersellia, Fersellia Fidya Farasalsabila Firdaus, M. Haikal Firdiyan Syah Firdiyan Syah Firstyani Imannisa Rahma Firstyani Imannisa Rahma Firza Septian Fitrah Eka Susilawati Fitriana, Frizka Fitriani Fitriani Fitrony, Fachri Ayudi Gabriel Bintang Timur Gardyas Bidari Adninda Ghifari, Dloifur Rohman Al Gusti F Rahman Gusti Fathur Rakhman Habib, Muhammad Hafidh Rezha Maulana Hafidz Sanjaya Hafidz Sanjaya, Hafidz Hafiz Ridha Pramudita Hafiz Ridha Pramudita, Hafiz Ridha Halim Bayuaji Sumarna Hamdani, Nahrowi Hamdikatama, Bimantyoso Hanafi Hanafi Hanafi Hanafi Hanafi Hani Setiani Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta HANIF AL FATTA Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta Hanif Al-Fatta Hardita, Veny Cahya Hartanto, Anggit Dwi Hartatik Hary Susanto Hasna Nirfya Rahmandhani Hastari Utama Hedy Leoni Helmawati, Nita Henderi . HENDRA SETIAWAN Hendrik Setiawan, Hendrik Herda Dicky Ramandita Herlandro Tribiakto Hidayat, Jati Arif Hikmianto, Riki Hirmayanti Hirmayanti, Hirmayanti Hudha, Yans Safarid I Dewa Bagas Suryajaya, I Dewa Bagas I Wayan Rangga Pinastawa Idris Idris Idris Idris Imam Ainuddin P Ina Sholihah Widiati, Ina Sholihah Indarto Indarto Irawan, Ridwan Dwi Irawan, Rio Irma Yanti Irsyad Khalid Ilyas Irwan Siswanto Iskandar, Ahmad Fikri Isra Andika Bakhri Ivan Rifky Hendrawan Ivan Rifky Hendrawan Ivan Rifky Hendrawan Jangkung Tri Nugroho Januario Freitas Araujo Bernardo Jihadul Akbar Juni Marianti, Dina Kartikasari Kusuma Agustiningsih Kasim, Rafli Junaidi Khifni Beyk Ahmad Khoirunnita, Aulia Khusnawi Khusnawi Krisnawati Krisnawati Kriswantoro, Andi Kurniawan, Mei Kurniawan, Muhammad Bayu Kurniawan, Muhammad Bayu Kusnawi Kusnawi KUSRINI Kusrini Kusrini, Kusrini Kuswantoro, RB. Hendri Langgeng Hadi Prasetijo Lestari, Verra Budhi Lewu, Retzi Lindrawati, Enni Lisa Dinda Yunita M Imam Budi Laksamana M. Imam Budi Laksamana M. Imam Budi Laksamana M. Nuraminudin M. Rudyanto Arief M. Rudyanto Arief M. Rudyanto Arief M. RUDYANTO ARIEF M. Rudyanto Arief M. Suyanto M. Suyanto, M. M. Syafri Lamato M. Ulil Albab M. Zainal Arifin M. Ziaurrahman Ma'ruf Aziz Muzani Mahdi Ridho Mahmud Zunus Amirudin Marianti, Dina Juni Maringka, Raissa Martina Endah Pratiwi Maulana Brama Shandy Megantara, Nugraha Asthra Mei P Kurniawan Mei P Kurniawan Mei P.Kurniawan MEI PARWANTO KURNIAWAN Miftah Alfian Firdausy Mochammad Yusa Mochammad Yusa Mochammad Yusa Mochammad Yusa, Mochammad Moh Muhtarom Mohammad Diqi Mohammad Edi Monalisa Fatmawati Sarifah Moniva, Anip Mudawil Qulub Muh Adha Muh Adha Muh Wal Ikram Muh Wal Ikram Muhamad Fatahillah Z Muhamad Paliya Sadana Muhamad Ridwan Muhammad Akbar Maulana Muhammad Altoumi Alsyaibani Muhammad Anwar Fauzi Muhammad Arfina Afwani Muhammad Fadli Muhammad Fadly Muhammad Fajrian Noor Muhammad Firdaus Abdi Muhammad Ilyas Prakanada Muhammad Lathifuddin Arif Muhammad Noor Arridho Muhammad Noor Arridho Muhammad Paliya Sadana Muhammad Resa Arif Yudianto Muhammad Ricky Perdana Putra Muhammad Rosikhu Muhammad Rusdi Rahman Muhammad Surahmanto Muhammad Syaiful Anam Muhammad Syukri Mustafa Muhammad Syukri Mustafa, Muhammad Syukri Mukhadimah Mursyid Ardiansyah Mutiara Dwi Anggraini NABILA OPER NAHROWI HAMDANI Nahrun Hartono Nahrun Hartono, Nahrun Nalda Kresimo Negoro Napianto, Riduwan Nasiri, Asro Ngaeni, Nurus Sarifatul Ngajiyanto, Ngajiyanto Ni Nyoman Utami Januhari, Ni Nyoman Nita Helmawati Nova Noor Kamala Sari Nugroho Setio Wibowo Nugroho, Jangkung Tri Nugroho, Muhammad Agung Nuk Ghurroh Setyoningrum Nuk Ghurroh Setyoningrum Nur Hamid Sutanto Nur Hamid Sutanto Nur?aini, Nur?aini Nura Nugraha, Icha Nurcahyo, Azriel Christian Nurfaizah Nurfaizah Nurfajri Asfa Nurhasan Nugroho Nuri Cahyono Nurmasani, Atik Nurul Ilma Hasana Kunio Nurul Pratiwi, Annisa Okfan Rizal Ferdiansyah Oktariani, Deta Olivia Maria Inacio Tavares Omar Muhamammad Altoumi Alsyaibani Omar Muhammad Altoumi Alsyaibani Pangera, Abas Ali Patmawati Hasan Pebri Antara Pebri Antara Prabowo Budi Utomo Pramudyantoro, Arvi Pranata, Caraka Aji Prasetio, Agung Budi Prasetyo, Ade Prasetyo, Yoga Adi Pratama, Rendy Bagus Pratama, Zudha Prayoga, Dimas pujiharto, eka wahyu Pulungan, Linda Nurul Taqwa Purnawan Purnawan Purwidiantoro, Moch. Hari Purwoko, Agus Putra, Muhammad Ricky Perdana Putu Putrayasa Qolbun Salim As Shidiqi Qolbun Salim As Shidiqi Raditya Maulana Anuraga Rahardyan Bisma Setya Putra Rahmad Ardhani Rahmandhani, Hasna Nirfya Rahmat Rahmat Rahmat Taufik R.L Bau Rahmatullah, Sidik Rakhma Shafrida Kurnia Ramadoni, Ramadoni Rasyida, Zulfa Raynaldi Fatih Amanullah Resty Wulanningrum Reyhan Dwi Putra Reyhan Dwi Putra Rhomita Sari Ria Andriani Ricki Firmansyah Rifki Fahmi Rifqi Anugrah Rifqi Mizan Aulawi Rifqi Mulyawan Riska Kurniyanto Abdullah Risma, Vita Melati Rismayani Rismayani Riyanto Riyanto Rizki Firdaus Mulya Rizky Arya Kurniawan Rizky Handayani Rizky Handayani Rizqa Luviana Musyarofah Rizy, M. Alfa Rodney Maringka Ronaldus Morgan James Roshandri, Wien Fitrian Roshandri, Wien Fitrian S, Muhammad Sabri Safor Madianto Saiful Bahri Samsul Bahri Samuel Adhi Bagaskoro Sapta Hary Surya Wibowo Saputra, Artha Gilang Saputra, Artha Gilang Sarah Bunda Desi Bawan Sarah Bunda Desy Bawan Sari, Rita Novita Sari, Yunita Sartika Sarkawi - Sartje Mala Rangkoly Sasoko, Wasis Haryo Selamet Riadi Selvi Marcellia Selvy Megira Setiawan Budiman Setiawan, Bambang Abdi Setiawan, Hendi Setya Putra, Rahardyan Bisma Sidiq Wahyu Surya Wijaya Sigit Sugiyanto Sigit Suryono Siswo Utomo, Mardi Slameto, Andika Agus Sodikin, Muh Ikbal Sofyan Pariyasto Sofyawati, Siti Sri Hartati Sri Hartati Sri Wahyuni Sri Yanto Qodarbaskoro Subastian Wibowo Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan, Sudarmawan Sudirman, San Sukoco Sukoco Sukoco Sukoco Sukrisno Amikom Suliswaningsih Suliswaningsih Suparyati Suparyati Supriadi, Oki Akbar Surya Ade Saputera Surya, Satria Dwi Suryono, Sigit Suryono, Wachid Daga Sutanto, Nur Hamid Sutrisno Sutrisno Suwanto Raharjo Suwanto Suwanto Suyadi - Suyatmi Suyatmi Swastikawati, Claudia Syah, Firdiyan Syah, Firdiyan Syahrudin, Erwin Syarham, Syarham Tamaulina Br Sembiring Tamrizal A. M. Tamsir, Kurniawati Tantoni, Ahmad Tantoni, Ahmad Teguh Ansyor Lorosae Tikasni, Elisa Tinuk Agustin Tommy Dwi Putra TONNY HIDAYAT Toto Indriyatmoko Toto Rusianto Tri Amri Wijaya Tri Yusnanto Triana Triana Triwerdaya, Aji Tuhpatussania, Siti Tutut Maitanti Ulinuha, Hinova Rezha Veny Cahya Hardita Verra Budhi Lestari Verra Budhi Lestari Vian Ardiyansyah Saputro Wahyu Ciptaningrum Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat wahyuni, wenti ayu Wicaksono, Sherif Aji Widijanuarto, Satyo Widjiyati, Nur Wijaksana, Candra Putra Wijaya, Tri Amri Yans Safarid Hudha Yanuargi, Bayu Yaqin, Aiinul Yefta Tolla Yetman Erwadi Yohanes Aryo Bismo Raharjo Yosef Murya Kusuma Ardhana Yulianto Mustaqim Yulita Fatma Andriani Yumarlin MZ Yusa, Mochammad Zakaria, Fariz Zitnaa Dhiaaul Kusnaa Washilatul Arba'ah Zitnaa Dhiaaul Kusnaa Washilatul Arba’ah Zitnaa Dhiaaul Kusnaa Washilatul Arba’ah Zulfa Rasyida Zulpan Hadi