p-Index From 2021 - 2026
29.181
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IJCCS (Indonesian Journal of Computing and Cybernetics Systems) TEKNIK INFORMATIKA Jurnal Informatika Dinamik Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi AMIKOM ICT AWARD 2010 Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris Jurnal Buana Informatika Jurnal Sarjana Teknik Informatika Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Dinamika Informatika Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika) Jurnal technoscientia Jurnal Teknologi Jurnal Pseudocode Jurnal Teknologi Informasi dan Ilmu Komputer Telematika Jurnal Edukasi dan Penelitian Informatika (JEPIN) Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto) JUITA : Jurnal Informatika Proceedings Konferensi Nasional Sistem dan Informatika (KNS&I) Seminar Nasional Informatika (SEMNASIF) CESS (Journal of Computer Engineering, System and Science) Proceeding SENDI_U Jurnal IPTEK-KOM (Jurnal Ilmu Pengetahuan dan Teknologi Komunikasi) Jurnal Inspiration KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Proceeding of the Electrical Engineering Computer Science and Informatics PROtek : Jurnal Ilmiah Teknik Elektro Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Creative Information Technology Journal AT-Tahdzib: Jurnal Studi Islam dan Muamalah SISFOTENIKA IJCIT (Indonesian Journal on Computer and Information Technology) Jurnal Ilmiah Universitas Batanghari Jambi INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi JIKO (Jurnal Informatika dan Komputer) JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Pilar Nusa Mandiri Syntax Literate: Jurnal Ilmiah Indonesia CogITo Smart Journal InComTech: Jurnal Telekomunikasi dan Komputer Insect (Informatics and Security) : Jurnal Teknik Informatika Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING Jurnal Komtika (Komputasi dan Informatika) JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal Informatika Universitas Pamulang Applied Information System and Management Jurnal Sinergitas PkM & CSR Jurnal Sisfokom (Sistem Informasi dan Komputer) ILKOM Jurnal Ilmiah RESEARCH : Computer, Information System & Technology Management INTECOMS: Journal of Information Technology and Computer Science JurTI (JURNAL TEKNOLOGI INFORMASI) Angkasa: Jurnal Ilmiah Bidang Teknologi Jiko (Jurnal Informatika dan komputer) MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer CYBERNETICS Digital Zone: Jurnal Teknologi Informasi dan Komunikasi J-SAKTI (Jurnal Sains Komputer dan Informatika) Journal on Education JURTEKSI Jurnal Informasi dan Komputer Multitek Indonesia : Jurnal Ilmiah Indonesian Journal of Applied Informatics Jurnal Manajemen Informatika Jambura Journal of Informatics JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) EXPLORE ComTech: Computer, Mathematics and Engineering Applications CSRID (Computer Science Research and Its Development Journal) Jurnal Ilmiah Sinus Informasi Interaktif Majalah Ilmiah Bahari Jogja CCIT (Creative Communication and Innovative Technology) Journal EDUMATIC: Jurnal Pendidikan Informatika Jurnal Abdimas PHB : Jurnal Pengabdian Masyarakat Progresif Humanis Brainstorming M A T H L I N E : Jurnal Matematika dan Pendidikan Matematika TAFAQQUH: Jurnal Hukum Ekonomi Syariah Dan Ahwal Syahsiyah Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Technologia: Jurnal Ilmiah JURNAL TAHURI SENSITEK E-JURNAL JUSITI : Jurnal Sistem Informasi dan Teknologi Informasi Aisyah Journal of Informatics and Electrical Engineering Jurnal Manajemen Informatika dan Sistem Informasi Journal of Information Systems and Informatics TAJDID KURVATEK Jurnal Teknologi Informasi : Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika Jurnal Tecnoscienza Respati IT (INFORMATIC TECHNIQUE) JOURNAL JOURNAL OF INFORMATION SYSTEM MANAGEMENT (JOISM) Journal of Intelligent Decision Support System (IDSS) G-Tech : Jurnal Teknologi Terapan SOSIOEDUKASI : JURNAL ILMIAH ILMU PENDIDIKAN DAN SOSIAL International Journal of Advances in Data and Information Systems Jurnal Sistem Komputer dan Informatika (JSON) Journal of Innovation Information Technology and Application (JINITA) Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Bulletin of Computer Science and Electrical Engineering (BCSEE) Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration Jurnal TIKOMSIN (Teknologi Informasi dan Komunikasi Sinar Nusantara) TEPIAN Infokes : Jurnal Ilmiah Rekam Medis dan Informasi Kesehatan JURNAL TEKNOLOGI TECHNOSCIENTIA Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia Journal of Electrical Engineering and Computer (JEECOM) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Mitra Mahajana: Jurnal Pengabdian Masyarakat Jurnal Pendidikan dan Teknologi Indonesia International Journal of Computer and Information System (IJCIS) Jurnal Informatika dan Teknologi Komputer ( J-ICOM) International Research on Big-data and Computer Technology (IRobot) Bulletin of Computer Science Research INFOSYS (INFORMATION SYSTEM) JOURNAL J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen International Journal of Informatics, Information System and Computer Engineering (INJIISCOM) International Journal of Research and Applied Technology (INJURATECH) Jurnal Ekonomi dan Teknik Informatika International Journal Artificial Intelligent and Informatics Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi Jurnal Dinamika Informatika (JDI) Jurnal Nasional Teknik Elektro dan Teknologi Informasi sudo Jurnal Teknik Informatika Jurnal Informatika Teknologi dan Sains (Jinteks) Duta.com : Jurnal Ilmiah Teknologi Informasi dan Komunikasi Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram EXPLORE Journal of Comprehensive Science Techno Indonesian Journal Computer Science (ijcs) Jurnal Educative: Journal of Educational Studies Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer JURNAL TEKNIK INDUSTRI Jurnal Pendidikan Indonesia (Japendi) Cerdika: Jurnal Ilmiah Indonesia International Journal of Advanced Science Computing and Engineering Innovative: Journal Of Social Science Research J-Icon : Jurnal Komputer dan Informatika Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) SmartComp Fahma : Jurnal Informatika Komputer, Bisnis dan Manajemen Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Teknomatika: Jurnal Informatika dan Komputer Proceeding of International Conference on Information Science and Technology Innovation (ICoSTEC) Tafaqquh : Jurnal Hukum Ekonomi Syariah dan Ahwal Syahsiyah Explore The Indonesian Journal of Computer Science Scientific Journal of Informatics Jurnal Teknologi KOPEMAS International Journal of Information Engineering and Science At-Tahdzib: Jurnal Studi Islam dan Muamalah semanTIK JESICA Jurnal Sistem Informasi Komputer dan Teknologi Informasi JuTISI (Jurnal Teknik Informatika dan Sistem Informasi) Journal of Business, Social, Management, and Technology Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

Found 10 Documents
Search
Journal : Telematika

RANCANGAN INFORMATION TECHNOLOGY SERVICE MANAGEMENT MENGGUNAKAN INFORMATION TECHNOLOGY INFRASTRUCTURE LIBRARY (Studi Kasus: STMIK AMIKOM Purwokerto) Nurfaizah Nurfaizah; Ema Utami; M. Rudyanto Arief
Telematika Vol 8, No 2: Agustus (2015)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (214.714 KB) | DOI: 10.35671/telematika.v8i2.393

Abstract

STMIK AMIKOM Purwokerto merupakan salah satu perguruan tinggi swasta yang dalam proses pengelolaan dan  penyampaian informasi telah menerapan teknologi informasi. Proses pelayanan suatu perguruan tinggi dipandang sebagai suatu solusi yang nantinya dapat meningkatkan kemampuan perusahaan di dalam pelayanan. Hal ini menyebabkan pentingnya peningkatan peran teknologi informasi agar selaras dengan  investasi baik hardware dan software yang dikeluarkan, sehingga dibutuhkan perencanaan yang optimal.IT Service Management (ITSM) digunakan sebagai upaya untuk meningkatkan efisiensi pelayanan teknologi informasi kepada pengguna yang terdapat dalam framework Information Technology Infrastructure Library.Diharapkan dengan penerapan ITSM pengelolaan layanan TI menjadi lebih baik serta mampu menyelesaikan beberapa permasalahan yang ada pada organisasiyang sedang berjalan dengan menggunakan COBIT 4.1. ITSM menghasilkan perancangan pada masing-masing prosesnya dari 2 domain pembangun ITSM yaitu domain service support dan service delivery.
PERANCANGAN SISTEM PENJADWALAN UJIAN MENGGUNAKAN ALGORITMA GENETIKA PADA STMIK AMIKOM PURWOKERTO Banu Dwi Putranto; Ema Utami; Andi Sunyoto
Telematika Vol 10, No 2: Agustus (2017)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (625.286 KB) | DOI: 10.35671/telematika.v10i2.547

Abstract

STMIK AMIKOM Purwokerto merupakan salah satu sekolah tinggi di Purwokerto yang perkembangannya semakin pesat. Untuk menentukan kemajuan belajar mahasiswa dilakukan penilaian berkala berbentuk ujian semester.  Dari sudut pandang manajemen masih terdapat kekurang dalam pemerataan alokasi ruang dan pengawas ujian, sehingga akan menimbulkan permasalahan dengan sumber daya pada ruangan yang berkaitan dengan waktu pemakaian dan  sangat mengganggu pelayanan, untuk itu dibutuhkan solusi baru untuk menyelesaikan permasalahan ini dengan memanfaatkan suatu algoritma, salah satu algoritma optimasi yang cukup handal dan sering dipakai dalam permasalahan penjadwalan adalah Genetic Algorithm (GA), karena karakteristik GA sesuai dengan penjadwalan yaitu dapat menyelesaikan objek yang banyak dan kriteria yang banyak.Berdasarkan latar belakang di atas, maka diusulkan penelitian tentang ”Perancangan Sistem Penjadwalan Ujian Menggunakan Genetic Algorithm Pada STMIK AMIKOM Purwokerto”. Tujuan dari penelitian ini adalah menghasilkan solusi Penjadwalan Ujian Menggunakan Genetic Algorithm yang dapat mengalokasikan ruangan dan pengawas yang lebih merata di STMIK AMIKOM Purwokerto. Pengembangan sistem menggunakan metode Rapid Application Development (RAD) dan pengolahan data menggunakan metode genetic algorithm untuk mendapatkan penjadwalan ujian yang optimum.Hasil dari penelitian ini menghasilkan solusi penjadwalan ujian yang  dapat mengalokasikan ruangan dan pengawas yang lebih merata di STMIK AMIKOM Purwokerto, karena tidak ada bentrok jadwal dan dapat mengalokasikan ruangan dan pengawas lebih merata dibandingkan dengan penjadwalan sebelumnya, akan tetapi masih membutuhkan peran pembuat jadwal untuk memaksimalkannya.
Perancangan Museum Batik Virtual Menggunakan Pendekatan MDA Suliswaningsih Suliswaningsih; Ema Utami; Andi Sunyoto
Telematika Vol 10, No 2: Agustus (2017)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (617.291 KB) | DOI: 10.35671/telematika.v10i2.551

Abstract

 Batik Banyumas kini sudah kembali muncul dan keberadaannya mulai dikenal oleh publik. Namun seiring perkembangan teknologi, pemerintah Kabupaten Banyumas harus dapat menyediakan sarana dan prasarana yang sesuai sehubungan dengan pelestarian warisan budaya lokal Kabupaten Banyumas. Hal ini akan bermanfaat bagi pengenalan dan pembelajaran untuk membantu para pengrajin dan pengusaha batik agar batik Banyumas semakin berkembang dan mempunyai nilai kompetitif dengan batik dari daerah lain. Media yang akan digunakan sebagai alat pengenalan seharusnya dapat menyajikan informasi yang jelas, menarik, tersedia saat dibutuhkan dan mudah diingat. Perancangan Museum Batik Virtual merupakan salah satu media yang dapat digunakan sebagai sumber informasi tentang batik Banyumas yang inovatif dan interaktif. Untuk merancang sebuah museum batik virtual, maka diperlukan suatu pendekatan yang tepat supaya dapat mengakomodir kebutuhan informasi bagi penggunanya. Perancangan menggunakan pendekatan MDA (Mechanic, Dynamic, Aesthetic) menurut Huricke bertujuan untuk menjembatani permasalahan yang sering terjadi dalam proses kreasi yang berkaitan antara dua bidang keahlian yang berseberangan: teknologi dan desain. Perbedaan teknologi dan desain pada perancangan museum virtual interaktif memunculkan tujuan yang disebut sebagai estetika interaksi, yaitu keindahan yang diakibatkan oleh aktifitas berinteraksi yang dimediasi oleh aplikasi komputer. Pendekatan MDA digunakan dalam penelitian untuk merancang aplikasi Museum Batik Virtual yaitu dengan menyelaraskan kebutuhan akan estetika rancangan museum yang didukung oleh kemampuan teknologi berbasis desktop application untuk membangun interaktivitas user dan aplikasi.
Comparison of Inverse Kinematics and Forward Kinematics Methods on Walk Cycle Animation Characters Afifah Nur Aini; Ema Utami; Suwanto Raharjo
Telematika Vol 14, No 1: February (2021)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v14i1.888

Abstract

The 3D animation industry is currently growing rapidly, but the process of animating 3D characters is not always fast, because it is often constrained at the animation stage due to the complexity or irregularity of the function of each rig on the 3D character object, therefore it takes a proper rig creation stage to support the animation process that is more efficient in terms of process and time. Kinematics in animation is used for reference when an object is moving. The animation uses a Kinematics approach to display natural results. This research aims to study the level of effectiveness in terms of the time span required to drive the 3D Walk cycle animation using the attached Kinematics & Advanced Kinematics methods. The animation reference used was a standard human Walk cycle with the extent for each part of the body to be animated such as head animation, hand animation, foot animation, and bed animation to complete a walking compilation of animated Walk cycle. The execution of each part is carried out by the inverse kinematics method and then proceed with the advanced kinematics method. Based on the results of the implementation in each section of the walk cycle by comparing the two methods, Inverse Kinematics is an effective method for animating the legs and the head. While the Forward Kinematics method is more effective in animating the hands, body parts, and finishing movement. The results of the comparison show that the level of time effectiveness in human character 3D animation movements using the inverse kinematics method compared to forward kinematics are 31.18% in body animation, 40.46% in foot animation, 13.94% in hand animation, 2.04% in head animation motion, and 7.61% for finishing walk cycle movement.
Survey on Deep Learning Based Intrusion Detection System Omar Muhammad Altoumi Alsyaibani; Ema Utami; Anggit Dwi Hartanto
Telematika Vol 14, No 2: August (2021)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v14i2.1317

Abstract

Development of computer network has changed human lives in many ways. Currently, everyone is connected to each other from everywhere. Information can be accessed easily. This massive development has to be followed by good security system. Intrusion Detection System is important device in network security which capable of monitoring hardware and software in computer network. Many researchers have developed Intrusion Detection System continuously and have faced many challenges, for instance: low detection of accuracy, emergence of new types malicious traffic and error detection rate. Researchers have tried to overcome these problems in many ways, one of them is using Deep Learning which is a branch of Machine Learning for developing Intrusion Detection System and it will be discussed in this paper. Machine Learning itself is a branch of Artificial Intelligence which is growing rapidly in the moment. Several researches have showed that Machine Learning and Deep Learning provide very promising results for developing Intrusion Detection System. This paper will present an overview about Intrusion Detection System in general, Deep Learning model which is often used by researchers, available datasets and challenges which will be faced ahead by researchers
Gaussian Pyramid Decomposition in Copy-Move Image Forgery Detection with SIFT and Zernike Moment Algorithms Firstyani Imannisa Rahma; Ema Utami; Hanif Al-Fatta
Telematika Vol 15, No 1: February (2022)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v15i1.1322

Abstract

One of the easiest manipulation methods is a copy-move forgery, which adds or hides objects in the images with copies of certain parts at the same pictures. The combination of SIFT and Zernike Moments is one of many methods that helping to detect textured and smooth regions. However, this combination is slowest than SIFT individually. On the other hand, Gaussian Pyramid Decomposition helps to reduce computation time. Because of this finding, we examine the impact of Gaussian Pyramid Decomposition in copy-move detection with SIFT and Zernike Moments combinations. We conducted detection test in plain copy-move, copy-move with rotation transformation, copy-move with JPEG compression, multiple copy-move, copy-move with reflection attack, and copy-move with image inpainting. We also examine the detections result with different values of gaussian pyramid limit and different area separation ratios. In detection with plain copy-move images, it generates low level of accuracy, precision and recall of 58.46%, 18.21% and 69.39%, respectively. The results are getting worse in for copy-move detection with reflection attack and copy-move with image inpainting. This weakness happened because this method has not been able to detect the position of the part of the image that is considered symmetrical and check whether the forged part uses samples from other parts of the image.
Detection and Classification of Banana Leaf Diseases: Systematic Literature Review Prasetyo, Ade; Utami, Ema
Telematika Vol 17, No 2: August (2024)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v17i2.2809

Abstract

Bananas, a staple fruit globally, are essential for sustenance, employment, and income. However, diseases like Sigatoka, Bacterial Wilt, Bunchy Top, and Fusarium Wilt pose a threat to their cultivation, affecting both small-scale and large-scale production. This survey investigates methods for the early identification and classification of these banana leaf diseases using deep learning and machine learning techniques. A systematic review of 15 studies revealed that the majority of research concentrates on binary classification, which distinguishes healthy from diseased leaves. Common preprocessing steps include image resizing, color space conversion, and background removal to improve model accuracy. We utilize techniques such as ensemble approaches, support vector machines (SVM), random forests, K-means clustering, and convolutional neural networks (CNNs), with CNNs demonstrating superior performance, achieving accuracy rates ranging from 85% to 98.97%. CNNs excel in hierarchical feature extraction but require significant computational power. Traditional machine learning methods offer simplicity and resistance to overfitting but need careful parameter tuning. Advanced deep learning architectures, such as DenseNet and Inception V3, achieve high accuracy but with greater computational demands. Lightweight models like SqueezeNet balance performance and size, but ensemble methods, while improving generalization, add complexity. The choice of method depends on dataset characteristics, available computational resources, and desired trade-offs between performance and complexity. This study provides an overview of current research in banana leaf disease classification, discussing the strengths and limitations of various approaches and suggesting directions for future research to improve detection accuracy and robustness.
Stacked LSTM-GRU Model for Traffic Anomalies Detection Alsyaibani, Omar Muhammad Altoumi; Utami, Ema; Raharjo, Suwanto; Hartanto, Anggit Dwi
Telematika Vol 15, No 2: August (2022)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v15i2.1855

Abstract

This study aims to improve the accuracy of the intrusion detection system model. It focused on LSTM and GRU methods proposed by several previous studies. The bidirectional layer was also tested to see if it improves model performance. Dataset used in the study was CIC IDS 2017. The dataset was divided into 3 parts, for training, validation, and testing purposes. Validation data was used to evaluate model performance in every training iteration. It helped to make the model would not overfit the training data. Furthermore, Dropout layer and L2 regularization were also added to the model architecture. The training model was done in a binary classification approach with a learning rate of 0.0001. We found that the stacked method reached accuracy 98.1087% in 100 iteration training. This result is slightly higher than LSTM, GRU, Bidirectional LSTM, and Bidirectional GRU. The method which contains LSTM layer performed its best accuracy using Tanh activation. Differently, GRU and Bidirectional GRU performed the best performance with Lrelu and Prelu activation function, respectively. All models could reach the plateau in the first 20 iterations, while in the next 80 iterations the model performance still could be fluctuately improved. Even though the model already reached the plateau in 20 iteration training, it is still possible for the model to slowly improve by using a small learning rate and by implementing Dropout layer and L2 regularization. Fluctuation of model performance implies that the highest model performance was not always reached in the last training iteration. ModelCheckPoint could help to overcome the issue. In addition, the Bidirectional layer increased the complexity of the model which certainly increased training duration. The bidirectional layer improved the performance of the GRU method, but it did not improve the performance LSTM method.
CNN and SVM Combination for Multi-Class Classification of Diabetic Retinopathy Based on Fundus Imaging Agustin, Tinuk; Purwidiantoro, Moch. Hari; Utami, Ema; Fatta, Hanif Al
Telematika Vol 15, No 2: August (2022)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v15i2.2086

Abstract

Diabetic Retinopathy (DR) is a cause of blindness. Early detection has the potential to save the patient's vision. Reading fundoscopic photos requires more expertise and effort by the ophthalmologist. There are many visual similarities in lesions and only minor differences in the spatial domain. A computer-assisted automatic detection system is needed to assist medical experts in DR diagnosis and can reduce costs. This study proposes a combination method of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for the automatic classification of Diabetic Retinopathy (DR). The pre-train architecture Inception-V3 uses for feature extraction of input data. After training and getting the best model, the next is classification with SVM. Data augmentation techniques use to multiply and add variations to the dataset. Before the feature extraction stage, the dataset will process by separating the green channel from the RGB image. Next, the CLAHE will require increasing the contrast of the picture. This study aims to improve the performance in multi-class DR classification. The proposed model uses four classes of unbalanced and small datasets from retinal fundus images. This paper also compares the combined performance of CNN SVM with CNN Softmax based on the accuracy value to validate the results. Our experiments show that the combination of CNN SVM can increase the accuracy of auto-detection of DR severity up to 11.48% better than CNN softmax. The results showed that the pre-trained architectural model from the combination of Inception-V3 with SVM classification improves the accuracy extensively, even on small and unbalanced datasets.
Guava Disease Detection and Classification: A Systematic Literature Review Kurniawan, Muhammad Bayu; Utami, Ema
Telematika Vol 18, No 1: February (2025)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v18i1.2901

Abstract

Guavas (Psidium guajava) are nutrient-rich fruits that provide significant health benefits. However, guava cultivation faces persistent threats from various diseases affecting both leaves and fruits, leading to substantial yield and quality losses. The early and accurate detection of these diseases is crucial but remains challenging due to economic constraints and limited infrastructure. While plant pathologists employ various diagnostic methods, these approaches are often time-consuming, costly, and sometimes inconsistent. Recent advancements in deep learning (DL) and machine learning (ML) have introduced innovative techniques for guava disease identification. This study conducts a Systematic Literature Review (SLR) to evaluate the existing research on guava leaf and fruit disease detection, focusing on dataset sources, identified disease categories, preprocessing and augmentation techniques, applied algorithms, and reported evaluation metrics. A comprehensive search was conducted across multiple databases, covering publications from 2017 to 2023, leading to the identification of 47 relevant studies. After applying exclusion criteria, 16 studies were selected for in-depth analysis. The findings highlight the most commonly used datasets, the predominant classification techniques, and the effectiveness of various deep learning models based on multiple performance metrics, providing insights into current research trends, existing limitations, and potential directions for future studies. This review serves as a valuable reference for researchers aiming to enhance the accuracy and efficiency of guava leaf and fruit disease diagnosis through data-driven approaches.
Co-Authors , Anggit Dwi Hartanto A.A. Ketut Agung Cahyawan W AA Sudharmawan, AA Abdul Malik Zuhdi Abdullah Ardi Abdullah, Riska K Abdulrahmat E Ahmad Abyan Fauzi Widihasani Achmad Yusron Arif Ade Pujianto Adi Surya Adiatma, Biva Candra Lutfi Adipradana, Candra Afif, Muhammad Sholih Afifah Nur Aini Afis Julianto Aflahah Apriliyani Afu Ichsan Pradana Agun Nurul Widiyanto Agung Budi Prasetio Agung Budi Prasetio Agung Budi Prasetio Agung Budi Prasetyo Agung Dwi Cahyanto Agung Susanto Agus Fathurahman Agus Fatkhurohman AGUS PURWANTO Agustin, Tinuk Agustina Srirahayu Agustina, Nova Ahmad Fauzi Ahmad Febri Diansyah Ahmad Fikri Iskandar Ahmad Fikri Iskandar Ahmad Fikri Iskandar Ahmad Hajar Ahsan, Muhammad Rafiqudin Ahsan, Muhammad Rafiqudin Ain, Quratul Ainul Yaqin Ainul Yaqin Ainul Yaqin Aji Said Wahyudi Hidayat Akhmad Dahlan Al Fathir As, Rahmat Saudi Aldy A Kulakat Alfansani, Abdul Rauf Alfin Mahadi Alimuddin Yasin Alin, Octhavia Almi Yulistia Alwanda Alqowiy, Mohd Qorib Alsyaibani, Omar Muhammad Altoumi Alva Hendi Muhammad Alva Hendi Muhammad Alva Hendi Muhammad Alvhinia Meinda Amitaba Alvian Trias Kurniawan Alvian Trias Kurniawan Alvina Felicia Watratan Amir Fatah Sofyan Amir, Fail Amrullah, Ahmad Afief Amrullah, Ahmad Afief Amrullah, Yusuf Amri Andang Wijanarko Andhika Wisnu Widyatama Andhika Wisnu Widyatama Andi Sunyoto Andrie Prajanueri Kristianto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto, Anggit Dwi Anggit Hartanto Anggriandi, Dendi Anip Moniva Anisa Rahmanti Anisya Nursyah Gusman Anjar Setiawan Annisa Rahayu P Antara, Pebri Anwar Sadad Ardi, Abdullah Arfian Hendro Priyono Arham Rahim Ari Rudiyan Arief Setyanto Arief, M.Rudyanto Arif Nur Rohman Arif Rahman Arif Santoso Arif Sutikno Arif, Achmad Yusron Aris Setiyadi aristin chusnul khotimah Arli Aditya Parikesit Armadiyah Amborowaty Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Arvi Pramudyantoro Arya Luthfi Mahadika Asrawi, Hannan Asro Nasiri Asro Nasiri Asro Nasiri Asro Nasiri Asro Nasiri Asrul Abdullah Astica, Yustikamasy Atin Hasanah Aziza Devita Indraswari Bambang Sumantri, R Bagus Bangun Watono Banu Dwi Putranto Basri, Nur Faizal Bayu Setiaji Béjar, Rodrigo Martínez Betri, Tigus Juni Bety Wulan Sari Bima Widianto Bisono, Hadi Hikmadyo Biva Candra Lutfi Adiatma Bonifacius Vicky Indriyono Bonifacius Vicky Indriyono, Bonifacius Vicky Brahmantha, Gede Putra Aditya Budi, Agung Prasetio Buyut Khoirul Umri Cahya Pangestu, Galang Candra Adipradana Candra Aditya Pinuyut Carolina, Vinnesa Patricia Catur Iswahyudi Catur Iswahyudi Catur Riyono Heri Wibowo Cecep Yedi Permana Chan Uswatun Khasanah Chavid Syukri Fatoni Christina Andriyani Constantin Menteng D. Diffran Nur Cahyo Dalillah Razan S Danar Putra Pamungkas, Danar Putra Dandi Sunardi Dany Fajar Kristanto Saputro Wibowo David Agustriawan Dede Sandi Dedy Ikhsan Dedy Sugiarto Deny Nugroho Triwibowo Dewi Yustika Lakoro Dhana Aulia Ayu Kurniawan Dhanar Intan Surya Saputra DHANI ARIATMANTO Dhani Ariatmanto Dhani Ratna Sari Dhani Ratna Sari, Dhani Ratna Dibyo Sudarsono Dimaz Arno Prasetio Dina Juni Marianti Dloifur Rohman Al Ghifari Donni Prabowo Donny Yulianto Dwi Ahmad Dzulhijjah Dwi Hartanto, Anggit Dwi Hartono, Anggit Dwi Rahayu Dwi Yuli Prasetyo Edhy Sutanta (Jurusan Teknik Informatika IST AKPRIND Yogyakarta) Edi, Mohammad Eko Boedijanto, Eko Eko Darmanto Eko Pramono Eko Pramono Eko Pramono Eko Pramono Eko Purwanto Elim, Marthinus Ikun Elvis Pawan Elvis Pawan Emha T. Luthfi Emha T. Luthfi, Emha T. Emha Taufik Lutfi Emha Taufiq Lutfi Emha Taufiq Lutfi, Emha Taufiq Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emilya Ully Artha Emilya Ully Artha Enie Yuliani Enni Lindrawati Erwin Syahrudin Esha Alma'arif Fachruddin Edi Nugroho Saputro Fahmi Ilmawan Fahry, Fahry Fail Amir Faisal Fadhila Fajar Ardanu Fajar Rohman Hariri Fajar Surya Putro Farid Fitriadi Fariz Zakaria Fathoni Dwiatmoko Fatoni, Chavid Syukri Fendi Sumanto Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Fersellia, Fersellia Fidya Farasalsabila Firdaus, M. Haikal Firdiyan Syah Firdiyan Syah Firstyani Imannisa Rahma Firstyani Imannisa Rahma Firza Septian Fitrah Eka Susilawati Fitriana, Frizka Fitriani Fitriani Fitrony, Fachri Ayudi Gabriel Bintang Timur Gardyas Bidari Adninda Ghifari, Dloifur Rohman Al Gusti F Rahman Gusti Fathur Rakhman Habib, Muhammad Hafidh Rezha Maulana Hafidz Sanjaya Hafidz Sanjaya, Hafidz Hafiz Ridha Pramudita Hafiz Ridha Pramudita, Hafiz Ridha Halim Bayuaji Sumarna Hamdani, Nahrowi Hamdikatama, Bimantyoso Hanafi Hanafi Hanafi Hanafi Hanafi Hani Setiani Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta HANIF AL FATTA Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta Hanif Al-Fatta Hardita, Veny Cahya Hartanto, Anggit Dwi Hartatik Hary Susanto Hasna Nirfya Rahmandhani Hastari Utama Hedy Leoni Helmawati, Nita Henderi . HENDRA SETIAWAN Hendrik Setiawan, Hendrik Herda Dicky Ramandita Herlandro Tribiakto Hidayat, Jati Arif Hikmianto, Riki Hirmayanti Hirmayanti, Hirmayanti Hudha, Yans Safarid I Dewa Bagas Suryajaya, I Dewa Bagas I Wayan Rangga Pinastawa Idris Idris Idris Idris Imam Ainuddin P Ina Sholihah Widiati, Ina Sholihah Indarto Indarto Irawan, Ridwan Dwi Irawan, Rio Irma Yanti Irsyad Khalid Ilyas Irwan Siswanto Iskandar, Ahmad Fikri Isra Andika Bakhri Ivan Rifky Hendrawan Ivan Rifky Hendrawan Ivan Rifky Hendrawan Jangkung Tri Nugroho Januario Freitas Araujo Bernardo Jihadul Akbar Juni Marianti, Dina Kartikasari Kusuma Agustiningsih Kasim, Rafli Junaidi Khifni Beyk Ahmad Khoirunnita, Aulia Khusnawi Khusnawi Krisnawati Krisnawati Kriswantoro, Andi Kurniawan, Mei Kurniawan, Muhammad Bayu Kurniawan, Muhammad Bayu Kusnawi Kusnawi KUSRINI Kusrini Kusrini, Kusrini Kuswantoro, RB. Hendri Langgeng Hadi Prasetijo Lestari, Verra Budhi Lewu, Retzi Lindrawati, Enni Lisa Dinda Yunita M Imam Budi Laksamana M. Imam Budi Laksamana M. Imam Budi Laksamana M. Nuraminudin M. Rudyanto Arief M. Rudyanto Arief M. RUDYANTO ARIEF M. Rudyanto Arief M. Rudyanto Arief M. Suyanto M. Suyanto, M. M. Syafri Lamato M. Ulil Albab M. Zainal Arifin M. Ziaurrahman Ma'ruf Aziz Muzani Mahdi Ridho Mahmud Zunus Amirudin Marianti, Dina Juni Maringka, Raissa Martina Endah Pratiwi Maulana Brama Shandy Megantara, Nugraha Asthra Mei P Kurniawan Mei P Kurniawan Mei P.Kurniawan MEI PARWANTO KURNIAWAN Miftah Alfian Firdausy Mochammad Yusa Mochammad Yusa Mochammad Yusa Mochammad Yusa, Mochammad Moh Muhtarom Mohammad Diqi Mohammad Edi Monalisa Fatmawati Sarifah Moniva, Anip Mudawil Qulub Muh Adha Muh Adha Muh Wal Ikram Muh Wal Ikram Muhamad Fatahillah Z Muhamad Paliya Sadana Muhamad Ridwan Muhammad Akbar Maulana Muhammad Altoumi Alsyaibani Muhammad Anwar Fauzi Muhammad Arfina Afwani Muhammad Fadli Muhammad Fadly Muhammad Fajrian Noor Muhammad Firdaus Abdi Muhammad Ilyas Prakanada Muhammad Lathifuddin Arif Muhammad Noor Arridho Muhammad Noor Arridho Muhammad Paliya Sadana Muhammad Resa Arif Yudianto Muhammad Ricky Perdana Putra Muhammad Rosikhu Muhammad Rusdi Rahman Muhammad Surahmanto Muhammad Syaiful Anam Muhammad Syukri Mustafa Muhammad Syukri Mustafa, Muhammad Syukri Mukhadimah Mursyid Ardiansyah Mutiara Dwi Anggraini NABILA OPER NAHROWI HAMDANI Nahrun Hartono Nahrun Hartono, Nahrun Nalda Kresimo Negoro Napianto, Riduwan Nasiri, Asro Ngaeni, Nurus Sarifatul Ngajiyanto, Ngajiyanto Ni Nyoman Utami Januhari, Ni Nyoman Nita Helmawati Nova Noor Kamala Sari Nugroho Setio Wibowo Nugroho, Jangkung Tri Nugroho, Muhammad Agung Nuk Ghurroh Setyoningrum Nuk Ghurroh Setyoningrum Nur Hamid Sutanto Nur Hamid Sutanto Nur?aini, Nur?aini Nura Nugraha, Icha Nurcahyo, Azriel Christian Nurfaizah Nurfaizah Nurfajri Asfa Nurhasan Nugroho Nuri Cahyono Nurmasani, Atik Nurul Ilma Hasana Kunio Nurul Pratiwi, Annisa Okfan Rizal Ferdiansyah Oktariani, Deta Olivia Maria Inacio Tavares Omar Muhamammad Altoumi Alsyaibani Omar Muhammad Altoumi Alsyaibani Pangera, Abas Ali Patmawati Hasan Pebri Antara Pebri Antara Prabowo Budi Utomo Pramudyantoro, Arvi Pranata, Caraka Aji Prasetio, Agung Budi Prasetyo, Ade Prasetyo, Yoga Adi Pratama, Rendy Bagus Pratama, Zudha Prayoga, Dimas pujiharto, eka wahyu Pulungan, Linda Nurul Taqwa Purnawan Purnawan Purwidiantoro, Moch. Hari Purwoko, Agus Putra, Muhammad Ricky Perdana Putu Putrayasa Qolbun Salim As Shidiqi Qolbun Salim As Shidiqi Raditya Maulana Anuraga Rahardyan Bisma Setya Putra Rahmad Ardhani Rahmat Rahmat Rahmat Taufik R.L Bau Rahmatullah, Sidik Rakhma Shafrida Kurnia Ramadoni, Ramadoni Rasyida, Zulfa Raynaldi Fatih Amanullah Resty Wulanningrum Reyhan Dwi Putra Reyhan Dwi Putra Rhomita Sari Ria Andriani Ricki Firmansyah Rifki Fahmi Rifqi Anugrah Rifqi Mizan Aulawi Rifqi Mulyawan Riska Kurniyanto Abdullah Risma, Vita Melati Rismayani Rismayani Riyanto Riyanto Rizki Firdaus Mulya Rizky Arya Kurniawan Rizky Handayani Rizky Handayani Rizqa Luviana Musyarofah Rizy, M. Alfa Rodney Maringka Ronaldus Morgan James Roshandri, Wien Fitrian Roshandri, Wien Fitrian S, Muhammad Sabri Safor Madianto Saiful Bahri Samsul Bahri Samuel Adhi Bagaskoro Sapta Hary Surya Wibowo Saputra, Artha Gilang Saputra, Artha Gilang Sarah Bunda Desi Bawan Sarah Bunda Desy Bawan Sari, Rita Novita Sari, Yunita Sartika Sarkawi - Sartje Mala Rangkoly Sasoko, Wasis Haryo Selamet Riadi Selvi Marcellia Selvy Megira Setiawan Budiman Setiawan, Bambang Abdi Setiawan, Hendi Setya Putra, Rahardyan Bisma Sidiq Wahyu Surya Wijaya Sigit Sugiyanto Sigit Suryono Siswo Utomo, Mardi Slameto, Andika Agus Sodikin, Muh Ikbal Sofyan Pariyasto Sofyawati, Siti Sri Hartati Sri Hartati Sri Wahyuni Sri Yanto Qodarbaskoro Subastian Wibowo Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan, Sudarmawan Sudirman, San Sukoco Sukoco Sukoco Sukoco Sukrisno Amikom Suliswaningsih Suliswaningsih Suparyati Suparyati Supriadi, Oki Akbar Surya Ade Saputera Surya, Satria Dwi Suryono, Sigit Suryono, Wachid Daga Sutanto, Nur Hamid Sutrisno Sutrisno Suwanto Raharjo Suwanto Suwanto Suyadi - Suyatmi Suyatmi Swastikawati, Claudia Syah, Firdiyan Syah, Firdiyan Syahrudin, Erwin Syarham, Syarham Tamaulina Br Sembiring Tamrizal A. M. Tamsir, Kurniawati Tantoni, Ahmad Tantoni, Ahmad Teguh Ansyor Lorosae Tikasni, Elisa Tinuk Agustin Tommy Dwi Putra TONNY HIDAYAT Toto Indriyatmoko Toto Rusianto Tri Amri Wijaya Tri Yusnanto Triana Triana Triwerdaya, Aji Tuhpatussania, Siti Tutut Maitanti Ulinuha, Hinova Rezha Veny Cahya Hardita Verra Budhi Lestari Verra Budhi Lestari Vian Ardiyansyah Saputro Wahyu Ciptaningrum Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat wahyuni, wenti ayu Wicaksono, Sherif Aji Widijanuarto, Satyo Widjiyati, Nur Wijaksana, Candra Putra Wijaya, Tri Amri Yans Safarid Hudha Yanuargi, Bayu Yaqin, Aiinul Yefta Tolla Yetman Erwadi Yohanes Aryo Bismo Raharjo Yosef Murya Kusuma Ardhana Yulianto Mustaqim Yulita Fatma Andriani Yumarlin MZ Yusa, Mochammad Zakaria, Fariz Zitnaa Dhiaaul Kusnaa Washilatul Arba'ah Zitnaa Dhiaaul Kusnaa Washilatul Arba’ah Zitnaa Dhiaaul Kusnaa Washilatul Arba’ah Zulfa Rasyida Zulpan Hadi