p-Index From 2021 - 2026
29.181
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IJCCS (Indonesian Journal of Computing and Cybernetics Systems) TEKNIK INFORMATIKA Jurnal Informatika Dinamik Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi AMIKOM ICT AWARD 2010 Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris Jurnal Buana Informatika Jurnal Sarjana Teknik Informatika Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Dinamika Informatika Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika) Jurnal technoscientia Jurnal Teknologi Jurnal Pseudocode Jurnal Teknologi Informasi dan Ilmu Komputer Telematika Jurnal Edukasi dan Penelitian Informatika (JEPIN) Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto) JUITA : Jurnal Informatika Proceedings Konferensi Nasional Sistem dan Informatika (KNS&I) Seminar Nasional Informatika (SEMNASIF) CESS (Journal of Computer Engineering, System and Science) Proceeding SENDI_U Jurnal IPTEK-KOM (Jurnal Ilmu Pengetahuan dan Teknologi Komunikasi) Jurnal Inspiration KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Proceeding of the Electrical Engineering Computer Science and Informatics PROtek : Jurnal Ilmiah Teknik Elektro Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Creative Information Technology Journal AT-Tahdzib: Jurnal Studi Islam dan Muamalah SISFOTENIKA IJCIT (Indonesian Journal on Computer and Information Technology) Jurnal Ilmiah Universitas Batanghari Jambi INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi JIKO (Jurnal Informatika dan Komputer) JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Pilar Nusa Mandiri Syntax Literate: Jurnal Ilmiah Indonesia CogITo Smart Journal InComTech: Jurnal Telekomunikasi dan Komputer Insect (Informatics and Security) : Jurnal Teknik Informatika Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING Jurnal Komtika (Komputasi dan Informatika) JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal Informatika Universitas Pamulang Applied Information System and Management Jurnal Sinergitas PkM & CSR Jurnal Sisfokom (Sistem Informasi dan Komputer) ILKOM Jurnal Ilmiah RESEARCH : Computer, Information System & Technology Management INTECOMS: Journal of Information Technology and Computer Science JurTI (JURNAL TEKNOLOGI INFORMASI) Angkasa: Jurnal Ilmiah Bidang Teknologi Jiko (Jurnal Informatika dan komputer) MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer CYBERNETICS Digital Zone: Jurnal Teknologi Informasi dan Komunikasi J-SAKTI (Jurnal Sains Komputer dan Informatika) Journal on Education JURTEKSI Jurnal Informasi dan Komputer Multitek Indonesia : Jurnal Ilmiah Indonesian Journal of Applied Informatics Jurnal Manajemen Informatika Jambura Journal of Informatics JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) EXPLORE ComTech: Computer, Mathematics and Engineering Applications CSRID (Computer Science Research and Its Development Journal) Jurnal Ilmiah Sinus Informasi Interaktif Majalah Ilmiah Bahari Jogja CCIT (Creative Communication and Innovative Technology) Journal EDUMATIC: Jurnal Pendidikan Informatika Jurnal Abdimas PHB : Jurnal Pengabdian Masyarakat Progresif Humanis Brainstorming M A T H L I N E : Jurnal Matematika dan Pendidikan Matematika TAFAQQUH: Jurnal Hukum Ekonomi Syariah Dan Ahwal Syahsiyah Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Technologia: Jurnal Ilmiah JURNAL TAHURI SENSITEK E-JURNAL JUSITI : Jurnal Sistem Informasi dan Teknologi Informasi Aisyah Journal of Informatics and Electrical Engineering Jurnal Manajemen Informatika dan Sistem Informasi Journal of Information Systems and Informatics TAJDID KURVATEK Jurnal Teknologi Informasi : Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika Jurnal Tecnoscienza Respati IT (INFORMATIC TECHNIQUE) JOURNAL JOURNAL OF INFORMATION SYSTEM MANAGEMENT (JOISM) Journal of Intelligent Decision Support System (IDSS) G-Tech : Jurnal Teknologi Terapan SOSIOEDUKASI : JURNAL ILMIAH ILMU PENDIDIKAN DAN SOSIAL International Journal of Advances in Data and Information Systems Jurnal Sistem Komputer dan Informatika (JSON) Journal of Innovation Information Technology and Application (JINITA) Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Bulletin of Computer Science and Electrical Engineering (BCSEE) Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration Jurnal TIKOMSIN (Teknologi Informasi dan Komunikasi Sinar Nusantara) TEPIAN Infokes : Jurnal Ilmiah Rekam Medis dan Informasi Kesehatan JURNAL TEKNOLOGI TECHNOSCIENTIA Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia Journal of Electrical Engineering and Computer (JEECOM) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Mitra Mahajana: Jurnal Pengabdian Masyarakat Jurnal Pendidikan dan Teknologi Indonesia International Journal of Computer and Information System (IJCIS) Jurnal Informatika dan Teknologi Komputer ( J-ICOM) International Research on Big-data and Computer Technology (IRobot) Bulletin of Computer Science Research INFOSYS (INFORMATION SYSTEM) JOURNAL J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen International Journal of Informatics, Information System and Computer Engineering (INJIISCOM) International Journal of Research and Applied Technology (INJURATECH) Jurnal Ekonomi dan Teknik Informatika International Journal Artificial Intelligent and Informatics Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi Jurnal Dinamika Informatika (JDI) Jurnal Nasional Teknik Elektro dan Teknologi Informasi sudo Jurnal Teknik Informatika Jurnal Informatika Teknologi dan Sains (Jinteks) Duta.com : Jurnal Ilmiah Teknologi Informasi dan Komunikasi Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram EXPLORE Journal of Comprehensive Science Techno Indonesian Journal Computer Science (ijcs) Jurnal Educative: Journal of Educational Studies Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer JURNAL TEKNIK INDUSTRI Jurnal Pendidikan Indonesia (Japendi) Cerdika: Jurnal Ilmiah Indonesia International Journal of Advanced Science Computing and Engineering Innovative: Journal Of Social Science Research J-Icon : Jurnal Komputer dan Informatika Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) SmartComp Fahma : Jurnal Informatika Komputer, Bisnis dan Manajemen Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Teknomatika: Jurnal Informatika dan Komputer Proceeding of International Conference on Information Science and Technology Innovation (ICoSTEC) Tafaqquh : Jurnal Hukum Ekonomi Syariah dan Ahwal Syahsiyah Explore The Indonesian Journal of Computer Science Scientific Journal of Informatics Jurnal Teknologi KOPEMAS International Journal of Information Engineering and Science At-Tahdzib: Jurnal Studi Islam dan Muamalah semanTIK JESICA Jurnal Sistem Informasi Komputer dan Teknologi Informasi JuTISI (Jurnal Teknik Informatika dan Sistem Informasi) Journal of Business, Social, Management, and Technology Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

ANoM STEMMER: Nazief & Andriani Modification for Madurese Stemming Enni Lindrawati; Ema Utami; Yaqin, Aiinul
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 6 (2023): December 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i6.5086

Abstract

Madurese is one of the regional languages ​​in Indonesia. This is a cultural property that needs to be preserved. With various uniqueness and word formation rules, the Madurese language can be used in information retrieval, namely stemming. The Madurese language has a close relationship with the Javanese language; in several studies, the stemming method is often used, such as the modification of the Nazief and Adriani method, which has good performance for the Javanese language, but there has never been any research on the Madurese language and it has not been proven successful. Previous studies also have not used morphophonemic rules that influence word formation in Madurese. Therefore, this research was developed by modifying Nazief and Adriani's algorithm for Madurese based on Madurese language morphology by removing affixes, namely ter-ater (prefix), panoteng (suffix), and morphophonemic rules. Corpus uses 1000 words from the Madurese language dictionary that have received affixes. The accuracy of the algorithm is 89% with 890 words that match; the prefix has an accuracy of 93.81%; the suffix has an accuracy of 83.78%; and the confix has an accuracy of 80.07%. As for the overall performance, it produces an accuracy of 89.0% with an error rate of 11%. Understemming is found in 104 words, and overstemming in 6 words. The time it takes to compile is 31.31 seconds.
Enhanced Yolov8 with OpenCV for Blind-Friendly Object Detection and Distance Estimation Erwin Syahrudin; Ema Utami; Anggit Dwi Hartanto
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 2 (2024): April 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i2.5529

Abstract

The development of computer technology and computer vision has had a significant positive impact on the daily lives of blind people, especially in efforts to improve their navigation skills. This research aims to introduce a superior object detection method, especially to support the sustainability and effectiveness of blind navigation. The main focus of the research is the use of YOLOv8, the latest version of YOLO, as an object detection method and distance measurement technology from OpenCV. The main challenge to address involves improving object detection accuracy and performance, which is an important key to ensuring safe and effective navigation for blind people. In this context, blind people often face obstacles in their mobility, especially when walking in environments that may be full of obstacles or obstacles. Therefore, better object detection methods become essential to ensure the identification of nearby objects that may involve obstacles or potential threats, thus preventing possible accidents or difficulties in daily commuting. Involving YOLOv8 as an object detection method provides the advantage of a high level of accuracy, although with a slight increase in detection duration and GPU power consumption compared to previous versions. The research results show that YOLOv8 provides a low error rate, with an average error percentage of 3.15%, indicating very optimal results. Using a combined performance evaluation approach of YOLOv8 and OpenCV distance measurement metrics, this research not only seeks to improve accuracy but also efficiency in detection time and power consumption. This research makes an important contribution to the presentation of technological solutions that can help improve mobility and safety for blind people, bringing a real positive impact on the facilitation of their daily lives.
Comparative Analysis of Hybrid Model Performance Using Stacking and Blending Techniques for Student Drop Out Prediction In MOOC Muhammad Ricky Perdana Putra; Ema Utami
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 3 (2024): June 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i3.5760

Abstract

Despite being in high demand as a lifelong learner and academic material supplement, the implementation of Massive Open Online Courses (MOOC) has problems, one of which is the dropout rate (DO) of students, which reaches 93%. As one of the solutions to this problem, machine learning can be utilized as a risk management and early warning system for students who have the potential to drop out. The use of ensemble techniques to build models can improve performance, but previous research has not reviewed the most optimal ensemble technique for this case study. As a form of contribution, this study will compare the performance of models built from stacking and blending techniques. The algorithms used in the base model are KNN, Decision Tree, and Naïve Bayes, while the meta-model uses XGBoost. These algorithms are used to build models with stacking and mixing techniques. The experimental results using stacking are 82.53% accuracy, 84.48% precision, 94.12% recall, and 89.04% F1 score. Meanwhile, the blend obtained 83.39% precision, 85.31% precision, 94.21% recall, and 89.54% F1-Score. These results are supported by model testing using k-fold cross-validation and confusion matrix techniques, which show the same results. That is, blending is 0.86% higher than stacking, so it can be concluded that blending performs better than stacking in the MOOC student dropout prediction case study.
Augmentation for Accuracy Improvement of YOLOv8 in Blind Navigation System Syahrudin, Erwin; Utami, Ema; Hartanto, Anggit Dwi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5931

Abstract

This study addresses the critical need for enhanced accuracy in YOLOv8 models designed for visually impaired navigation systems. Existing models often struggle with consistency in object detection and distance estimation under varying environmental conditions, leading to potential safety risks. To overcome these challenges, this research implements a rigorous approach combining data augmentation and meticulous model optimization techniques. The process begins with the meticulous collection of a diverse dataset, essential for training a robust model. Subsequent preprocessing of images in the HSV color space ensures standardized input features, crucial for consistency in model training. Augmentation techniques are then applied to enrich the dataset, enhancing model generalization and robustness. The YOLOv8 model is trained using this augmented dataset, leading to significant enhancements in key performance metrics. Specifically, mean average precision (mAP) improved by 13.3%, from 0.75 to 0.85, precision increased by 10%, from 0.80 to 0.88, and recall rose by 10.3%, from 0.78 to 0.86. Further optimization efforts, including parameter tuning and the strategic integration of a Kalman Filter, notably improved object tracking and distance estimation capabilities. Final validation in real-world scenarios confirms the efficacy of the optimized model, demonstrating its readiness for practical deployment. This comprehensive approach showcases tangible advances in navigational assistance technology, significantly improving safety and reliability for visually impaired users.
An Optimized Hyperparameter Tuning for Improved Hate Speech Detection with Multilayer Perceptron Muhamad Ridwan; Ema Utami
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5949

Abstract

Hate speech classification is a critical task in the domain of natural language processing, aiming to mitigate the negative impacts of harmful content on digital platforms. This study explores the application of a Multilayer Perceptron (MLP) model for hate speech classification, utilizing Bag of Words (BoW) for feature extraction. The hypothesis posits that hyperparameter tuning through sophisticated optimization techniques will significantly improve model performance. To validate this hypothesis, we employed two distinct hyperparameter tuning approaches: Random Search and Optuna. Random Search provides a straightforward yet effective means of exploring the hyperparameter space, while Optuna offers a more sophisticated, optimization-based approach to hyperparameter selection. The study involved training the MLP model on a labeled dataset is based on crawling results on the Twitter platform of hate speech and non-hate speech overall total dataset is 13.169, followed by evaluation using standard metrics. Our experimental results demonstrate the comparative effectiveness of these two hyperparameter tuning methods. Notably, the MLP model tuned with Optuna achieved a higher F1-score of 81.49%, compared to 79.70% achieved with Random Search, indicating the superior performance of Optuna in optimizing the hyperparameters. These results were obtained through extensive cross-validation to ensure robustness and generalizability. The findings underscore the importance of optimized hyperparameters in developing robust hate speech classification systems. The superior perform ance of Optuna highlights its potential for broader application in other machine learning tasks requiring hyperparameter optimization. This improvement enables more reliable and efficient automated moderation, which is crucial for the integrity and security of digital communication platforms such as Twitter.
Data Clustering for Sentiment Classification with Naïve Bayes and Support Vector Machine Yanuargi, Bayu; Ema Utami; Kusrini; Parikesit, Arli Aditya
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 6 (2024): December 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i6.6139

Abstract

Visitor reviews play a crucial role in determining the success of a business, particularly those offering hospitality and services, such as hotels. The growth of internet technology has made it easier for guests to share their experiences, which can influence potential customers. Google Maps is one of the platforms used for giving and searching reviews This research uses data crawled from Google Maps Review using the playwright library. However, the large volume of reviews can make analysis and topic-based categorization—such as service quality, hotel location, and operational hours—challenging. To address this, DBSCAN is used to cluster reviews based on these topics. Clustering helps improve sentiment classification, making it more targeted and allowing a comparison of two machine learning algorithms: Naïve Bayes and Support Vector Machine (SVM). Naïve Bayes achieved higher accuracy (0.87) in the operational hours cluster, while SVM scored 0.78. However, SVM showed improved accuracy in the location (0.89) and service (0.88) clusters, with Naïve Bayes maintaining a stable 0.86 accuracy in both. Both models demonstrated an average training time of less than one second, excluding preprocessing.
Utilization of the Convolutional Neural Network Method for Detecting Banana Leaf Disease Nita Helmawati; Ema Utami
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 6 (2024): December 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i6.6140

Abstract

Banana leaf diseases such as Sigatoka, Cordana, and Pestalotiopsis pose a significant threat to banana productivity, with implications for food security and the global economy. Early detection of this disease is an important step to reduce its spread and maintain crop yield stability. This research utilizes the Convolutional Neural Network (CNN) method to detect banana leaf diseases based on image analysis of infected and healthy leaves. The dataset used includes 937 images consisting of four main categories, namely healthy leaves, Sigatoka, Cordana, and Pestalotiopsis. The dataset is processed through augmentation to increase data diversity and quality. The CNN model was applied for classification, with evaluation results reaching 92.85% accuracy, 95.73% recall, 93.52% precision, and 94.60% F1-score. This research contributes to the development of Artificial Intelligence-based technology for applications in the agricultural sector, especially in supporting farmers to detect banana leaf diseases quickly, accurately and efficiently. The research results also provide recommendations for exploring additional data augmentation and increasing dataset variety to improve model detection performance in the future. This shows CNN's potential in supporting sustainable agriculture in the modern era.
Evaluating Transformer Models for Social Media Text-Based Personality Profiling Hartanto, Anggit; Ema Utami; Arief Setyanto; Kusrini
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 1 (2025): February 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i1.6157

Abstract

This research aims to evaluate the performance of various Transformer models in social media-based classification tasks, specifically focusing on applications in personality profiling. With the growing interest in leveraging social media as a data source for understanding individual personality traits, selecting an appropriate model becomes crucial for enhancing accuracy and efficiency in large-scale data processing. Accurate personality profiling can provide valuable insights for applications in psychology, marketing, and personalized recommendations. In this context, models such as BERT, RoBERTa, DistilBERT, TinyBERT, MobileBERT, and ALBERT are utilized in this study to understand their performance differences under varying configurations and dataset conditions, assessing their suitability for nuanced personality profiling tasks. The research methodology involves four experimental scenarios with a structured process that includes data acquisition, preprocessing, tokenization, model fine-tuning, and evaluation. In Scenarios 1 and 2, a full dataset of 9,920 data points was used with standard fine-tuning parameters for all models. In contrast, ALBERT in Scenario 2 was optimized using customized batch size, learning rate, and weight decay. Scenarios 3 and 4 used 30% of the total dataset, with additional adjustments for ALBERT to examine its performance under specific conditions. Each scenario is designed to test model robustness against variations in parameters and dataset size. The experimental results underscore the importance of tailoring fine-tuning parameters to optimize model performance, particularly for parameter-efficient models like ALBERT. ALBERT and MobileBERT demonstrated strong performance across conditions, excelling in scenarios requiring accuracy and efficiency. BERT proved to be a robust and reliable choice, maintaining high performance even with reduced data, while RoBERTa and DistilBERT may require further adjustments to adapt to data-limited conditions. Although efficient, TinyBERT may fall short on tasks demanding high accuracy due to its limited representational capacity. Selecting the right model requires balancing computational efficiency, task-specific requirements, and data complexity.
Enhanced Heart Disease Diagnosis Using Machine Learning Algorithms: A Comparison of Feature Selection Hirmayanti; Ema Utami
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 2 (2025): April 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i2.6175

Abstract

Heart disease or cardiovascular disease is one of the leading causes of death in the world. Based on WHO data, in 2019, as many as 17.9 million people died from cardiovascular disease. If early prevention is not carried out immediately, of course, the victims will increase every year. Therefore, with the increasingly rapid development of technology, especially in the health sector, it is hoped that it can help medical personnel in treating patients suffering from various diseases, especially heart disease. So in this study, it will be more focused on the selection of relevant features or attributes to increase the accuracy value of the Machine Learning algorithm. The algorithms used include Random Forest and SVM. Meanwhile, for feature selection, several feature selection techniques are used, including information gain (IG), Chi-square (Chi2) and correlation feature selection (CFS). The use of these three techniques aims to obtain the main features so that they can minimize irrelevant features that can slow down the machine process. Based on the results of the experiment with a comparison of 70:30, it shows that CFS-SVM is superior by using nine features, which obtain the highest accuracy of 92.19%, while CFS-RF obtains the best value with eight features of 91.88%. By using feature selection and hyperparameter techniques, SVM obtained an increase of 10.88%, and RF obtained an increase of 9.47%. Based on the performance of the model using the selected relevant features, it shows that the proposed CFS-SVM shows good and efficient performance in diagnosing heart disease.
A Comparative Study of EmberGen and Blender in Fire Explosion Simulations Arya Luthfi Mahadika; Ema Utami
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 2 (2025): MEY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v14i2.2335

Abstract

The advancement of visual effects (VFX) technology has intensified the need for efficient fire explosion simulations across film, gaming, and real-time applications. This study investigates and compares the performance of two prominent simulation tools—EmberGen and Blender—by focusing on processing time efficiency and simulation quality. The research specifically evaluates five critical simulation aspects: fire particle generation, smoke behavior, turbulence effects, light dispersion, and final rendering (finishing). A total of five professional VFX artists conducted five separate tests using each software, generating a comprehensive dataset for analysis. Results show that EmberGen achieves a 29.91% overall improvement in simulation speed compared to Blender, with significant gains in fire particle generation (38.5%), smoke simulation (42.3%), turbulence effects (15.7%), light dispersion (8.9%), and finishing (11.6%). These findings indicate that EmberGen is highly effective for real-time or rapid-turnaround projects, while Blender remains advantageous for detailed, high-fidelity simulations in cinematic contexts. The study concludes that software selection should be driven by project-specific demands, where EmberGen supports time-sensitive production workflows and Blender offers greater artistic control. This research underscores the critical need for aligning simulation tools with both creative goals and production efficiency, contributing to decision-making in VFX, animation pipelines, and educational training environments within the information systems and digital content domains.
Co-Authors , Anggit Dwi Hartanto A.A. Ketut Agung Cahyawan W AA Sudharmawan, AA Abdul Malik Zuhdi Abdullah Ardi Abdullah, Riska K Abdulrahmat E Ahmad Abyan Fauzi Widihasani Achmad Yusron Arif Ade Pujianto Adi Surya Adiatma, Biva Candra Lutfi Adipradana, Candra Afif, Muhammad Sholih Afifah Nur Aini Afis Julianto Aflahah Apriliyani Afu Ichsan Pradana Agun Nurul Widiyanto Agung Budi Prasetio Agung Budi Prasetio Agung Budi Prasetio Agung Budi Prasetyo Agung Dwi Cahyanto Agung Susanto Agus Fathurahman Agus Fatkhurohman AGUS PURWANTO Agustin, Tinuk Agustina Srirahayu Agustina, Nova Ahmad Fauzi Ahmad Febri Diansyah Ahmad Fikri Iskandar Ahmad Fikri Iskandar Ahmad Fikri Iskandar Ahmad Hajar Ahsan, Muhammad Rafiqudin Ahsan, Muhammad Rafiqudin Ain, Quratul Ainul Yaqin Ainul Yaqin Ainul Yaqin Aji Said Wahyudi Hidayat Akhmad Dahlan Al Fathir As, Rahmat Saudi Aldy A Kulakat Alfansani, Abdul Rauf Alfin Mahadi Alimuddin Yasin Alin, Octhavia Almi Yulistia Alwanda Alqowiy, Mohd Qorib Alsyaibani, Omar Muhammad Altoumi Alva Hendi Muhammad Alva Hendi Muhammad Alva Hendi Muhammad Alvhinia Meinda Amitaba Alvian Trias Kurniawan Alvian Trias Kurniawan Alvina Felicia Watratan Amir Fatah Sofyan Amir, Fail Amrullah, Ahmad Afief Amrullah, Ahmad Afief Amrullah, Yusuf Amri Andang Wijanarko Andhika Wisnu Widyatama Andhika Wisnu Widyatama Andi Sunyoto Andrie Prajanueri Kristianto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto, Anggit Dwi Anggit Hartanto Anggriandi, Dendi Anip Moniva Anisa Rahmanti Anisya Nursyah Gusman Anjar Setiawan Annisa Rahayu P Antara, Pebri Anwar Sadad Ardi, Abdullah Arfian Hendro Priyono Arham Rahim Ari Rudiyan Arief Setyanto Arief, M.Rudyanto Arif Nur Rohman Arif Rahman Arif Santoso Arif Sutikno Arif, Achmad Yusron Aris Setiyadi aristin chusnul khotimah Arli Aditya Parikesit Armadiyah Amborowaty Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Arvi Pramudyantoro Arya Luthfi Mahadika Asrawi, Hannan Asro Nasiri Asro Nasiri Asro Nasiri Asro Nasiri Asro Nasiri Asrul Abdullah Astica, Yustikamasy Atin Hasanah Aziza Devita Indraswari Bambang Sumantri, R Bagus Bangun Watono Banu Dwi Putranto Basri, Nur Faizal Bayu Setiaji Béjar, Rodrigo Martínez Betri, Tigus Juni Bety Wulan Sari Bima Widianto Bisono, Hadi Hikmadyo Biva Candra Lutfi Adiatma Bonifacius Vicky Indriyono Bonifacius Vicky Indriyono, Bonifacius Vicky Brahmantha, Gede Putra Aditya Budi, Agung Prasetio Buyut Khoirul Umri Cahya Pangestu, Galang Candra Adipradana Candra Aditya Pinuyut Carolina, Vinnesa Patricia Catur Iswahyudi Catur Iswahyudi Catur Riyono Heri Wibowo Cecep Yedi Permana Chan Uswatun Khasanah Chavid Syukri Fatoni Christina Andriyani Constantin Menteng D. Diffran Nur Cahyo Dalillah Razan S Danar Putra Pamungkas, Danar Putra Dandi Sunardi Dany Fajar Kristanto Saputro Wibowo David Agustriawan Dede Sandi Dedy Ikhsan Dedy Sugiarto Deny Nugroho Triwibowo Dewi Yustika Lakoro Dhana Aulia Ayu Kurniawan Dhanar Intan Surya Saputra DHANI ARIATMANTO Dhani Ariatmanto Dhani Ratna Sari Dhani Ratna Sari, Dhani Ratna Dibyo Sudarsono Dimaz Arno Prasetio Dina Juni Marianti Dloifur Rohman Al Ghifari Donni Prabowo Donny Yulianto Dwi Ahmad Dzulhijjah Dwi Hartanto, Anggit Dwi Hartono, Anggit Dwi Rahayu Dwi Yuli Prasetyo Edhy Sutanta (Jurusan Teknik Informatika IST AKPRIND Yogyakarta) Edi, Mohammad Eko Boedijanto, Eko Eko Darmanto Eko Pramono Eko Pramono Eko Pramono Eko Pramono Eko Purwanto Elim, Marthinus Ikun Elvis Pawan Elvis Pawan Emha T. Luthfi Emha T. Luthfi, Emha T. Emha Taufik Lutfi Emha Taufiq Lutfi Emha Taufiq Lutfi, Emha Taufiq Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emilya Ully Artha Emilya Ully Artha Enie Yuliani Enni Lindrawati Erwin Syahrudin Esha Alma'arif Fachruddin Edi Nugroho Saputro Fahmi Ilmawan Fahry, Fahry Fail Amir Faisal Fadhila Fajar Ardanu Fajar Rohman Hariri Fajar Surya Putro Farid Fitriadi Fariz Zakaria Fathoni Dwiatmoko Fatoni, Chavid Syukri Fendi Sumanto Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Fersellia, Fersellia Fidya Farasalsabila Firdaus, M. Haikal Firdiyan Syah Firdiyan Syah Firstyani Imannisa Rahma Firstyani Imannisa Rahma Firza Septian Fitrah Eka Susilawati Fitriana, Frizka Fitriani Fitriani Fitrony, Fachri Ayudi Gabriel Bintang Timur Gardyas Bidari Adninda Ghifari, Dloifur Rohman Al Gusti F Rahman Gusti Fathur Rakhman Habib, Muhammad Hafidh Rezha Maulana Hafidz Sanjaya Hafidz Sanjaya, Hafidz Hafiz Ridha Pramudita Hafiz Ridha Pramudita, Hafiz Ridha Halim Bayuaji Sumarna Hamdani, Nahrowi Hamdikatama, Bimantyoso Hanafi Hanafi Hanafi Hanafi Hanafi Hani Setiani Hanif Al Fatta HANIF AL FATTA Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta Hanif Al-Fatta Hardita, Veny Cahya Hartanto, Anggit Dwi Hartatik Hary Susanto Hasna Nirfya Rahmandhani Hastari Utama Hedy Leoni Helmawati, Nita Henderi . HENDRA SETIAWAN Hendrik Setiawan, Hendrik Herda Dicky Ramandita Herlandro Tribiakto Hidayat, Jati Arif Hikmianto, Riki Hirmayanti Hirmayanti, Hirmayanti Hudha, Yans Safarid I Dewa Bagas Suryajaya, I Dewa Bagas I Wayan Rangga Pinastawa Idris Idris Idris Idris Imam Ainuddin P Ina Sholihah Widiati, Ina Sholihah Indarto Indarto Irawan, Ridwan Dwi Irawan, Rio Irma Yanti Irsyad Khalid Ilyas Irwan Siswanto Iskandar, Ahmad Fikri Isra Andika Bakhri Ivan Rifky Hendrawan Ivan Rifky Hendrawan Ivan Rifky Hendrawan Jangkung Tri Nugroho Januario Freitas Araujo Bernardo Jihadul Akbar Juni Marianti, Dina Kartikasari Kusuma Agustiningsih Kasim, Rafli Junaidi Khifni Beyk Ahmad Khoirunnita, Aulia Khusnawi Khusnawi Krisnawati Krisnawati Kriswantoro, Andi Kurniawan, Mei Kurniawan, Muhammad Bayu Kurniawan, Muhammad Bayu Kusnawi Kusnawi KUSRINI Kusrini Kusrini, Kusrini Kuswantoro, RB. Hendri Langgeng Hadi Prasetijo Lestari, Verra Budhi Lewu, Retzi Lindrawati, Enni Lisa Dinda Yunita M Imam Budi Laksamana M. Imam Budi Laksamana M. Imam Budi Laksamana M. Nuraminudin M. Rudyanto Arief M. Rudyanto Arief M. RUDYANTO ARIEF M. Rudyanto Arief M. Rudyanto Arief M. Suyanto M. Suyanto, M. M. Syafri Lamato M. Ulil Albab M. Zainal Arifin M. Ziaurrahman Ma'ruf Aziz Muzani Mahdi Ridho Mahmud Zunus Amirudin Marianti, Dina Juni Maringka, Raissa Martina Endah Pratiwi Maulana Brama Shandy Megantara, Nugraha Asthra Mei P Kurniawan Mei P Kurniawan Mei P.Kurniawan MEI PARWANTO KURNIAWAN Miftah Alfian Firdausy Mochammad Yusa Mochammad Yusa Mochammad Yusa Mochammad Yusa, Mochammad Moh Muhtarom Mohammad Diqi Mohammad Edi Monalisa Fatmawati Sarifah Moniva, Anip Mudawil Qulub Muh Adha Muh Adha Muh Wal Ikram Muh Wal Ikram Muhamad Fatahillah Z Muhamad Paliya Sadana Muhamad Ridwan Muhammad Akbar Maulana Muhammad Altoumi Alsyaibani Muhammad Anwar Fauzi Muhammad Arfina Afwani Muhammad Fadli Muhammad Fadly Muhammad Fajrian Noor Muhammad Firdaus Abdi Muhammad Ilyas Prakanada Muhammad Lathifuddin Arif Muhammad Noor Arridho Muhammad Noor Arridho Muhammad Paliya Sadana Muhammad Resa Arif Yudianto Muhammad Ricky Perdana Putra Muhammad Rosikhu Muhammad Rusdi Rahman Muhammad Surahmanto Muhammad Syaiful Anam Muhammad Syukri Mustafa Muhammad Syukri Mustafa, Muhammad Syukri Mukhadimah Mursyid Ardiansyah Mutiara Dwi Anggraini NABILA OPER NAHROWI HAMDANI Nahrun Hartono Nahrun Hartono, Nahrun Nalda Kresimo Negoro Napianto, Riduwan Nasiri, Asro Ngaeni, Nurus Sarifatul Ngajiyanto, Ngajiyanto Ni Nyoman Utami Januhari, Ni Nyoman Nita Helmawati Nova Noor Kamala Sari Nugroho Setio Wibowo Nugroho, Jangkung Tri Nugroho, Muhammad Agung Nuk Ghurroh Setyoningrum Nuk Ghurroh Setyoningrum Nur Hamid Sutanto Nur Hamid Sutanto Nur?aini, Nur?aini Nura Nugraha, Icha Nurcahyo, Azriel Christian Nurfaizah Nurfaizah Nurfajri Asfa Nurhasan Nugroho Nuri Cahyono Nurmasani, Atik Nurul Ilma Hasana Kunio Nurul Pratiwi, Annisa Okfan Rizal Ferdiansyah Oktariani, Deta Olivia Maria Inacio Tavares Omar Muhamammad Altoumi Alsyaibani Omar Muhammad Altoumi Alsyaibani Pangera, Abas Ali Patmawati Hasan Pebri Antara Pebri Antara Prabowo Budi Utomo Pramudyantoro, Arvi Pranata, Caraka Aji Prasetio, Agung Budi Prasetyo, Ade Prasetyo, Yoga Adi Pratama, Rendy Bagus Pratama, Zudha Prayoga, Dimas pujiharto, eka wahyu Pulungan, Linda Nurul Taqwa Purnawan Purnawan Purwidiantoro, Moch. Hari Purwoko, Agus Putra, Muhammad Ricky Perdana Putu Putrayasa Qolbun Salim As Shidiqi Qolbun Salim As Shidiqi Raditya Maulana Anuraga Rahardyan Bisma Setya Putra Rahmad Ardhani Rahmandhani, Hasna Nirfya Rahmat Rahmat Rahmat Taufik R.L Bau Rahmatullah, Sidik Rakhma Shafrida Kurnia Ramadoni, Ramadoni Rasyida, Zulfa Raynaldi Fatih Amanullah Resty Wulanningrum Reyhan Dwi Putra Reyhan Dwi Putra Rhomita Sari Ria Andriani Ricki Firmansyah Rifki Fahmi Rifqi Anugrah Rifqi Mizan Aulawi Rifqi Mulyawan Riska Kurniyanto Abdullah Risma, Vita Melati Rismayani Rismayani Riyanto Riyanto Rizki Firdaus Mulya Rizky Arya Kurniawan Rizky Handayani Rizky Handayani Rizqa Luviana Musyarofah Rizy, M. Alfa Rodney Maringka Ronaldus Morgan James Roshandri, Wien Fitrian Roshandri, Wien Fitrian S, Muhammad Sabri Safor Madianto Saiful Bahri Samsul Bahri Samuel Adhi Bagaskoro Sapta Hary Surya Wibowo Saputra, Artha Gilang Saputra, Artha Gilang Sarah Bunda Desi Bawan Sarah Bunda Desy Bawan Sari, Rita Novita Sari, Yunita Sartika Sarkawi - Sartje Mala Rangkoly Sasoko, Wasis Haryo Selamet Riadi Selvi Marcellia Selvy Megira Setiawan Budiman Setiawan, Bambang Abdi Setiawan, Hendi Setya Putra, Rahardyan Bisma Sidiq Wahyu Surya Wijaya Sigit Sugiyanto Sigit Suryono Siswo Utomo, Mardi Slameto, Andika Agus Sodikin, Muh Ikbal Sofyan Pariyasto Sofyawati, Siti Sri Hartati Sri Hartati Sri Wahyuni Sri Yanto Qodarbaskoro Subastian Wibowo Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan, Sudarmawan Sudirman, San Sukoco Sukoco Sukoco Sukoco Sukrisno Amikom Suliswaningsih Suliswaningsih Suparyati Suparyati Supriadi, Oki Akbar Surya Ade Saputera Surya, Satria Dwi Suryono, Sigit Suryono, Wachid Daga Sutanto, Nur Hamid Sutrisno Sutrisno Suwanto Raharjo Suwanto Suwanto Suyadi - Suyatmi Suyatmi Swastikawati, Claudia Syah, Firdiyan Syah, Firdiyan Syahrudin, Erwin Syarham, Syarham Tamaulina Br Sembiring Tamrizal A. M. Tamsir, Kurniawati Tantoni, Ahmad Tantoni, Ahmad Teguh Ansyor Lorosae Tikasni, Elisa Tinuk Agustin Tommy Dwi Putra TONNY HIDAYAT Toto Indriyatmoko Toto Rusianto Tri Amri Wijaya Tri Yusnanto Triana Triana Triwerdaya, Aji Tuhpatussania, Siti Tutut Maitanti Ulinuha, Hinova Rezha Veny Cahya Hardita Verra Budhi Lestari Verra Budhi Lestari Vian Ardiyansyah Saputro Wahyu Ciptaningrum Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat wahyuni, wenti ayu Wicaksono, Sherif Aji Widijanuarto, Satyo Widjiyati, Nur Wijaksana, Candra Putra Wijaya, Tri Amri Yans Safarid Hudha Yanuargi, Bayu Yaqin, Aiinul Yefta Tolla Yetman Erwadi Yohanes Aryo Bismo Raharjo Yosef Murya Kusuma Ardhana Yulianto Mustaqim Yulita Fatma Andriani Yumarlin MZ Yusa, Mochammad Zakaria, Fariz Zitnaa Dhiaaul Kusnaa Washilatul Arba'ah Zitnaa Dhiaaul Kusnaa Washilatul Arba’ah Zitnaa Dhiaaul Kusnaa Washilatul Arba’ah Zulfa Rasyida Zulpan Hadi