p-Index From 2021 - 2026
29.181
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IJCCS (Indonesian Journal of Computing and Cybernetics Systems) TEKNIK INFORMATIKA Jurnal Informatika Dinamik Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi AMIKOM ICT AWARD 2010 Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris Jurnal Buana Informatika Jurnal Sarjana Teknik Informatika Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Dinamika Informatika Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika) Jurnal technoscientia Jurnal Teknologi Jurnal Pseudocode Jurnal Teknologi Informasi dan Ilmu Komputer Telematika Jurnal Edukasi dan Penelitian Informatika (JEPIN) Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto) JUITA : Jurnal Informatika Proceedings Konferensi Nasional Sistem dan Informatika (KNS&I) Seminar Nasional Informatika (SEMNASIF) CESS (Journal of Computer Engineering, System and Science) Proceeding SENDI_U Jurnal IPTEK-KOM (Jurnal Ilmu Pengetahuan dan Teknologi Komunikasi) Jurnal Inspiration KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Proceeding of the Electrical Engineering Computer Science and Informatics PROtek : Jurnal Ilmiah Teknik Elektro Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Creative Information Technology Journal AT-Tahdzib: Jurnal Studi Islam dan Muamalah SISFOTENIKA IJCIT (Indonesian Journal on Computer and Information Technology) Jurnal Ilmiah Universitas Batanghari Jambi INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi JIKO (Jurnal Informatika dan Komputer) JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Pilar Nusa Mandiri Syntax Literate: Jurnal Ilmiah Indonesia CogITo Smart Journal InComTech: Jurnal Telekomunikasi dan Komputer Insect (Informatics and Security) : Jurnal Teknik Informatika Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING Jurnal Komtika (Komputasi dan Informatika) JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal Informatika Universitas Pamulang Applied Information System and Management Jurnal Sinergitas PkM & CSR Jurnal Sisfokom (Sistem Informasi dan Komputer) ILKOM Jurnal Ilmiah RESEARCH : Computer, Information System & Technology Management INTECOMS: Journal of Information Technology and Computer Science JurTI (JURNAL TEKNOLOGI INFORMASI) Angkasa: Jurnal Ilmiah Bidang Teknologi Jiko (Jurnal Informatika dan komputer) MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer CYBERNETICS Digital Zone: Jurnal Teknologi Informasi dan Komunikasi J-SAKTI (Jurnal Sains Komputer dan Informatika) Journal on Education JURTEKSI Jurnal Informasi dan Komputer Multitek Indonesia : Jurnal Ilmiah Indonesian Journal of Applied Informatics Jurnal Manajemen Informatika Jambura Journal of Informatics JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) EXPLORE ComTech: Computer, Mathematics and Engineering Applications CSRID (Computer Science Research and Its Development Journal) Jurnal Ilmiah Sinus Informasi Interaktif Majalah Ilmiah Bahari Jogja CCIT (Creative Communication and Innovative Technology) Journal EDUMATIC: Jurnal Pendidikan Informatika Jurnal Abdimas PHB : Jurnal Pengabdian Masyarakat Progresif Humanis Brainstorming M A T H L I N E : Jurnal Matematika dan Pendidikan Matematika TAFAQQUH: Jurnal Hukum Ekonomi Syariah Dan Ahwal Syahsiyah Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Technologia: Jurnal Ilmiah JURNAL TAHURI SENSITEK E-JURNAL JUSITI : Jurnal Sistem Informasi dan Teknologi Informasi Aisyah Journal of Informatics and Electrical Engineering Jurnal Manajemen Informatika dan Sistem Informasi Journal of Information Systems and Informatics TAJDID KURVATEK Jurnal Teknologi Informasi : Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika Jurnal Tecnoscienza Respati IT (INFORMATIC TECHNIQUE) JOURNAL JOURNAL OF INFORMATION SYSTEM MANAGEMENT (JOISM) Journal of Intelligent Decision Support System (IDSS) G-Tech : Jurnal Teknologi Terapan SOSIOEDUKASI : JURNAL ILMIAH ILMU PENDIDIKAN DAN SOSIAL International Journal of Advances in Data and Information Systems Jurnal Sistem Komputer dan Informatika (JSON) Journal of Innovation Information Technology and Application (JINITA) Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Bulletin of Computer Science and Electrical Engineering (BCSEE) Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration Jurnal TIKOMSIN (Teknologi Informasi dan Komunikasi Sinar Nusantara) TEPIAN Infokes : Jurnal Ilmiah Rekam Medis dan Informasi Kesehatan JURNAL TEKNOLOGI TECHNOSCIENTIA Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia Journal of Electrical Engineering and Computer (JEECOM) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Mitra Mahajana: Jurnal Pengabdian Masyarakat Jurnal Pendidikan dan Teknologi Indonesia International Journal of Computer and Information System (IJCIS) Jurnal Informatika dan Teknologi Komputer ( J-ICOM) International Research on Big-data and Computer Technology (IRobot) Bulletin of Computer Science Research INFOSYS (INFORMATION SYSTEM) JOURNAL J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen International Journal of Informatics, Information System and Computer Engineering (INJIISCOM) International Journal of Research and Applied Technology (INJURATECH) Jurnal Ekonomi dan Teknik Informatika International Journal Artificial Intelligent and Informatics Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi Jurnal Dinamika Informatika (JDI) Jurnal Nasional Teknik Elektro dan Teknologi Informasi sudo Jurnal Teknik Informatika Jurnal Informatika Teknologi dan Sains (Jinteks) Duta.com : Jurnal Ilmiah Teknologi Informasi dan Komunikasi Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram EXPLORE Journal of Comprehensive Science Techno Indonesian Journal Computer Science (ijcs) Jurnal Educative: Journal of Educational Studies Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer JURNAL TEKNIK INDUSTRI Jurnal Pendidikan Indonesia (Japendi) Cerdika: Jurnal Ilmiah Indonesia International Journal of Advanced Science Computing and Engineering Innovative: Journal Of Social Science Research J-Icon : Jurnal Komputer dan Informatika Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) SmartComp Fahma : Jurnal Informatika Komputer, Bisnis dan Manajemen Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Teknomatika: Jurnal Informatika dan Komputer Proceeding of International Conference on Information Science and Technology Innovation (ICoSTEC) Tafaqquh : Jurnal Hukum Ekonomi Syariah dan Ahwal Syahsiyah Explore The Indonesian Journal of Computer Science Scientific Journal of Informatics Jurnal Teknologi KOPEMAS International Journal of Information Engineering and Science At-Tahdzib: Jurnal Studi Islam dan Muamalah semanTIK JESICA Jurnal Sistem Informasi Komputer dan Teknologi Informasi JuTISI (Jurnal Teknik Informatika dan Sistem Informasi) Journal of Business, Social, Management, and Technology Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

Penerapan Algoritma Boyer Moore yang di Modifikasi untuk stemmer Bahasa Indonesia Kasim, Rafli Junaidi; Utami, Ema
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 9, No 3 (2024)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v9i3.5449

Abstract

Proses stemming dalam Natural Language Processing (NLP) adalah tahap penting dalam pra-pemrosesan data untuk mengurai bentuk kata menjadi kata dasar. Dalam konteks bahasa Indonesia, proses ini melibatkan penghapusan imbuhan untuk menemukan kata dasar. Beberapa metode stemming yang umum digunakan termasuk Porter stemmer, Lancaster stemmer, Snowball stemmer, dan Nazief Andriani stemmer. Meskipun banyak penelitian telah dilakukan untuk meningkatkan akurasi stemming, penelitian ini menyoroti peran algoritma string matching, terutama algoritma Boyer Moore, dalam mencocokkan hasil stemming dengan kamus kata. Namun, implementasi langsung algoritma Boyer Moore menghadapi kendala karena mencocokkan pattern pada seluruh teks, yang harusnya hanya pada bagian kanan kata. Oleh karena itu, algoritma ini dimodifikasi agar sesuai dengan kebutuhan dan tetap mempertahankan kinerjanya. Studi terdahulu menunjukkan bahwa algoritma Boyer Moore memiliki kinerja yang lebih cepat dibandingkan dengan beberapa algoritma string matching lainnya seperti Knuth Morris Pratt, Brute Force, dan Rabin Karp. Hasil penelitian ini berhasil mencapai tingkat akurasi sebesar 95,2% dari total 500 kata yang diproses. Hasil dari penilitian ini juga menunjukan kesalahan stemming yang terjadi hanya diakibatkan dari understemming dan beberapa yang kata tidak ter-stemming.
Analysis of Question Items Using the Differentiating Power Method Zakaria, Fariz; Sasoko, Wasis Haryo; Utami, Ema
International Journal of Informatics, Information System and Computer Engineering (INJIISCOM) Vol. 6 No. 1 (2025): INJIISCOM: VOLUME 6, ISSUE 1, JUNE 2025
Publisher : Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/injiiscom.v6i1.11920

Abstract

The use of multiple choice questions in exams remains a common choice in education for various reasons, such as ease of assessment, perceived objectivity, and the ability to provide rapid feedback especially in large classes. Research shows that the use of multiple choice questions can strengthen retention of information, especially involving alternative wrong answers, as well as measure students' basic understanding in various subjects. However, to create quality multiple choice questions, an in-depth evaluation of the question elements is required, including item analysis to ensure the validity, reliability and fairness of the assessment. The results of this research using quantitative descriptive methods show that most of the questions can be improved, while a small number need to be rejected. The research conclusions suggest that rejected items should not be reused, while items that need to be corrected should be improved to improve the overall quality of the exam. Thus, analyzing the quality of multiple choice questions is crucial for increasing the effectiveness of assessment, especially in higher education contexts such as nursing and medical education.
Deteksi Cyberbullying Menggunakan BERT dan Bi-LSTM Farasalsabila, Fidya; Utami, Ema; Hanafi, Hanafi
Jurnal Teknologi Vol 17 No 1 (2024): Jurnal Teknologi
Publisher : Jurnal Teknologi, Fakultas Teknik, Universitas AKPRIND Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34151/jurtek.v17i1.4636

Abstract

Cyberbullying is a digital problem that is not a new phenomenon. This existed before the advent of social networks, and cyberbullying has a wide impact, including a person's mental and physiological conditions such as sadness, anxiety and depression. The main objective of this research is to develop an effective cyberbullying detection system using natural language processing techniques. The method used in this research includes the application of the BERT (Bi-Directional Encoder Representations from Transformers) and Bi-LSTM (Bi-Directional Long Short-Term Memory) models as a deep learning approach to analyze text and detect cyberbullying behavior. This approach allows the system to understand complex language contexts and capture patterns that traditional methods may find difficult to identify. Testing was carried out using a dataset that included various types of Indonesian language texts containing cyber bullying acts. The research results show that the combination of BERT and Bi-LSTM is able to provide superior detection performance with a high accuracy rate of 90% and the ability to identify variations of cyber bullying. This research makes a significant contribution to efforts to protect individuals from the negative impacts of cyber bullying through the development of a sophisticated and adaptive detection system.
Literature Study on the Development of Neural Networks For Weather Forecasting Amir, Fail; Utami, Ema; Hanafi, Hanafi
Jurnal Teknologi Vol 17 No 1 (2024): Jurnal Teknologi
Publisher : Jurnal Teknologi, Fakultas Teknik, Universitas AKPRIND Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34151/jurtek.v17i1.4637

Abstract

Weather prediction has always been crucial for individuals to make informed decisions and protect themselves from potential hazards. Achieving accurate weather forecasts has historically been a significant challenge. Modern weather forecasting has evolved to integrate sophisticated computer models, data from atmospheric balloons and satellites, and insights from local observations. These methods have resulted in fairly precise predictions. Most forecasting models depend on complex mathematical formulas, but Artificial Neural Networks (ANN) offer a dynamic alternative, adapting their structure based on incoming data. This research aimed to thoroughly evaluate the effectiveness of ANNs in weather prediction. It explored the advantages of ANNs over traditional models, reviewed a range of methodologies, and documented the latest advancements in the field. The ultimate goal was to consolidate research findings to highlight the strides made in enhancing weather forecasting through ANNs.
Detect Fake Reviews Using Random Forest and Support Vector Machine Hadi, Zulpan; Utami, Ema; Ariatmanto, Dhani
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 2 (2023): Research Article, Volume 7 Issue 2 April, 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i2.12090

Abstract

With the rapid development of e-commerce, which makes it possible to buy and sell products and services online, customers are increasingly using these online shop sites to fulfill their needs. After purchase, customers write reviews about their personal experiences, feelings and emotions. Reviews of a product are the main source of information for customers to make decisions to buy or not a product. However, reviews that should be one piece of information that can be trusted by customers can actually be manipulated by the owner of the seller. Where sellers can spam reviews to increase their product ratings or bring down their competitors. Therefore this study discusses detecting fake reviews on productreviews on Tokopedia. Where the method used is the distribution post tagging feature to perform detection. By using the post tagging feature method the distribution got 856 fake reviews and 4478 genuine reviews. In the fake reviews, there were 628 reviews written with the aim of increasing product sales or brand names from store owners, while there were 228 reviews aimed at dropping their competitors or competitors. Furthermore, the classification is carried out using the random forest algorithm model and the support vector machine. By dividing the dataset for training data by 80% while 20% for data testing. Here it is known that the support vector machine gets much higher accuracy than the random forest. The support vector machine gets an accuracy of 98% while the random forest gets an accuracy of 60%
Sentiment Analysis of Shopee Food Application User Satisfaction Using the C4.5 Decision Tree Method Fersellia, Fersellia; Utami, Ema; Yaqin, Ainul
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 3 (2023): Article Research Volume 7 Issue 3, July 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i3.12531

Abstract

Sentiment analysis on public opinion regarding the shopee food application is an interesting topic in the context of evaluating service quality in the shopee food application. In this digital era, user opinion has a very important role in shaping public perception of the application. Therefore, sentiment analysis is needed to understand user opinion about the shopee food application. This study uses Decision Tree C4.5 to analyze public sentiment on the use of the Shopee Food application on Twitter users. However, beforehand it is necessary to overcome the problem of data imbalance which is common in datasets, where the number of positive, negative, and neutral sentiments is not balanced. To overcome this problem, three different techniques are used, namely SMOTE, undersampling, and a combination of oversampling and undersampling. The results of this study indicate that the SMOTE technique provides better results in overcoming data imbalances and increasing prediction accuracy. With an accuracy of 0.88. the SMOTE technique can provide more accurate sentiment predictions than the undersampling technique and the combination of oversampling and undersampling. This is because SMOTE can synthetically expand the number of minority samples, thereby preventing the loss of information and maintaining variation in the dataset. In conclusion, sentiment analysis on the Shopee Food application on Google Play using the Decision Tree C4.5 algorithm and the SMOTE technique can overcome data imbalances with a prediction accuracy of 0.88. This technique is more efficient than the undersampling technique and the combination of oversampling and undersampling. These results can provide developers with valuable insights to improve app quality and user satisfaction.
Comparison of NB and SVM in Sentiment Analysis of Cyberbullying using Feature Selection Riadi, Selamet; Utami, Ema; Yaqin, Ainul
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12629

Abstract

In the past few decades, the internet has become an inseparable part of human life. It provides ease of access and permeates almost every aspect of human existence. One of the internet platforms that is widely used by people around the world is social media. Apart from being spoiled with the convenience and efficiency offered by social media to support daily life, it has gained popularity among a wide audience. This has positive implications when utilized effectively, but it cannot be denied that there are negative consequences if not utilized properly. One such consequence is the prevalence of cyberbullying activities on social media. Cyberbullying has become a major concern for the public and social media users, prompting researchers to leverage information technology in developing technologies that can identify the elements of cyberbullying, particularly on social media platforms. Sentiment analysis has been employed by researchers to identify the components of cyberbullying in online platforms. Sentiment analysis involves the application of natural language processing techniques and text analysis to identify and extract subjective information from text. This study aims to compare the Naive Bayes algorithm and the Support Vector Machine algorithm, while utilizing feature selection, specifically chi-square, to enhance the accuracy of both algorithms in classifying Instagram comments. The experimental results indicate that the Multinomial Naive Bayes (MNB) algorithm outperforms the Support Vector Machine (SVM) algorithm, achieving an accuracy of 83.85% without feature selection and 90.77% with feature selection. Meanwhile, SVM achieves an accuracy of 82.31% without feature selection and 90% with feature selection. Evaluation through the confusion matrix and classification report reveals that MNB exhibits better precision and recall rates compared to SVM in identifying bullying and non-bullying classes. The use of feature selection enhances the performance of both algorithms in classifying Instagram comments related to cyberbullying.
Comparison of Sentiment Analysis Methods on Topic Haram of Music In Youtube Al Fathir As, Rahmat Saudi; Utami, Ema; Dwi Hartono, Anggit
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12776

Abstract

Sentiment analysis on video lectures on YouTube that discuss the haram of music is an exciting topic to find out public opinion. This study aims to find what factors affect the model's accuracy in sentiment analysis, especially on video lecture content on YouTube. The data used is comment data on three video lectures that discuss the haram of music, which has been labelled into two categories: positive and negative. The data is divided into two categories, namely primary data, as many as 2099 data that have not been normalized, while secondary data has 1001 data that have been normalized. The experiment shows that the validity of the data, labelling the data, the amount of data, and preprocessing are essential points in forming a good sentiment analysis classification model because, from the test results, it was found that imbalance techniques such as SMOTE, word embedding word2Vec and FastText, and SVM and KNN classification algorithms do not provide maximum accuracy if the data used primary data. However, the data imbalance process, such as oversampling and SVM and KNN classification algorithms, will provide better model accuracy if used with secondary data. Based on the trial results, it is found that when using the SVM algorithm, primary data produces the highest accuracy at 58.35%, while secondary data is 72.23%. If using KNN, the primary data provides the highest model accuracy at 53.54%, while the secondary data has the highest accuracy at 72.81%. Based on these results, it was found that the validity of the data or data must be appropriate and related to the case raised and labelling the data must be done carefully because the most crucial is the inappropriate data in preprocessing the data must be done correctly, if data preprocessing is done in an inappropriate way then data imbalance techniques such as oversampling do not have enough influence on increasing accuracy, but if on the contrary then accuracy will increase. The selection of the right word embedding also affects accuracy. It is necessary to do many experiments to select the correct algorithm and follow the data owned because selecting the correct algorithm will provide maximum accuracy model results
Comparative Analysis of CNN and CNN-SVM Methods For Classification Types of Human Skin Disease Anggriandi, Dendi; Utami, Ema; Ariatmanto, Dhani
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12831

Abstract

Cancer is one of the leading causes of death worldwide, with skin cancer ranking fifth. The skin, as the outermost organ of the body, is susceptible to various diseases, and accurate diagnosis is crucial for effective treatment. However, limited access to dermatologists and expensive skin biopsies poses challenges in achieving efficient diagnosis. Therefore, it is important to develop a system that can assist in efficiently classifying skin diseases to overcome these limitations. In the field of skin disease classification, Machine Learning and Deep Learning methods, especially Convolutional Neural Network (CNN), have demonstrated high accuracy in medical image classification. CNN's advantage lies in its ability to automatically and deeply extract features from skin images. The combination of CNN and Support Vector Machine (SVM) offers an interesting approach, with CNN used for feature extraction and SVM as the classification algorithm. This research compares two classification methods: CNN with MobileNet architecture and CNN-SVM with various kernel types to classify human skin diseases. The dataset consists of seven classes of skin diseases with a total of 21.000 images. The results of the CNN classification show an accuracy of 93.47%, with high precision, recall, and F1-score, at 93.55%, 93.74%, and 93.62%, respectively. Meanwhile, the CNN-SVM model with "poly," "rbf," "linear," and "sigmoid" kernels exhibits varied performances. Overall, the CNN-SVM model performs lower than the CNN model. The findings offer insights for medical image analysis and skin disease classification research. Researchers can enhance CNN-SVM model performance with varied kernel types and techniques for complex feature representations.
The LSTM and Bidirectional GRU Comparison for Text Classification Asrawi, Hannan; Utami, Ema; Yaqin, Ainul
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12899

Abstract

Although the phrases machine learning and AI are frequently used interchangeably and are frequently discussed together, they do not have the same meanings. While all artificial intelligence (AI) is machine learning, not all AI is machine learning, which is a key distinction. In the beginning, machine learning and natural language processing (NLP) are related since machine learning is frequently employed as a tool for NLP tasks. The advantage of NLP is that it can perform analysis, and examine a lot of data, including comments on social media accounts and hundreds of online customer evaluations. Text classification is essentially what needs to be done. This study compares Bidirectional GRU and LSTM as text classification algorithms using 20,000 newsgroup documents from 20 newsgroups from The UCI KDD Archive. After using the suggested model, we compare it to the long short-term memory and bidirectional GRU models for accuracy and validation. The results of the two comparisons show that the bidirectional GRU model performs better than the long short-term memory model. And this is a successful classification of text using a deep learning algorithm that uses a bidirectional GRU.
Co-Authors , Anggit Dwi Hartanto A.A. Ketut Agung Cahyawan W AA Sudharmawan, AA Abdul Malik Zuhdi Abdullah Ardi Abdullah, Riska K Abdulrahmat E Ahmad Abyan Fauzi Widihasani Achmad Yusron Arif Ade Pujianto Adi Surya Adiatma, Biva Candra Lutfi Adipradana, Candra Afif, Muhammad Sholih Afifah Nur Aini Afis Julianto Aflahah Apriliyani Afu Ichsan Pradana Agun Nurul Widiyanto Agung Budi Prasetio Agung Budi Prasetio Agung Budi Prasetio Agung Budi Prasetyo Agung Dwi Cahyanto Agung Susanto Agus Fathurahman Agus Fatkhurohman AGUS PURWANTO Agustin, Tinuk Agustina Srirahayu Agustina, Nova Ahmad Fauzi Ahmad Febri Diansyah Ahmad Fikri Iskandar Ahmad Fikri Iskandar Ahmad Fikri Iskandar Ahmad Hajar Ahsan, Muhammad Rafiqudin Ahsan, Muhammad Rafiqudin Ain, Quratul Ainul Yaqin Ainul Yaqin Ainul Yaqin Aji Said Wahyudi Hidayat Akhmad Dahlan Al Fathir As, Rahmat Saudi Aldy A Kulakat Alfansani, Abdul Rauf Alfin Mahadi Alimuddin Yasin Alin, Octhavia Almi Yulistia Alwanda Alqowiy, Mohd Qorib Alsyaibani, Omar Muhammad Altoumi Alva Hendi Muhammad Alva Hendi Muhammad Alva Hendi Muhammad Alvhinia Meinda Amitaba Alvian Trias Kurniawan Alvian Trias Kurniawan Alvina Felicia Watratan Amir Fatah Sofyan Amir, Fail Amrullah, Ahmad Afief Amrullah, Ahmad Afief Amrullah, Yusuf Amri Andang Wijanarko Andhika Wisnu Widyatama Andhika Wisnu Widyatama Andi Sunyoto Andrie Prajanueri Kristianto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto, Anggit Dwi Anggit Hartanto Anggriandi, Dendi Anip Moniva Anisa Rahmanti Anisya Nursyah Gusman Anjar Setiawan Annisa Rahayu P Antara, Pebri Anwar Sadad Ardi, Abdullah Arfian Hendro Priyono Arham Rahim Ari Rudiyan Arief Setyanto Arief, M.Rudyanto Arif Nur Rohman Arif Rahman Arif Santoso Arif Sutikno Arif, Achmad Yusron Aris Setiyadi aristin chusnul khotimah Arli Aditya Parikesit Armadiyah Amborowaty Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Arvi Pramudyantoro Arya Luthfi Mahadika Asrawi, Hannan Asro Nasiri Asro Nasiri Asro Nasiri Asro Nasiri Asro Nasiri Asrul Abdullah Astica, Yustikamasy Atin Hasanah Aziza Devita Indraswari Bambang Sumantri, R Bagus Bangun Watono Banu Dwi Putranto Basri, Nur Faizal Bayu Setiaji Béjar, Rodrigo Martínez Betri, Tigus Juni Bety Wulan Sari Bima Widianto Bisono, Hadi Hikmadyo Biva Candra Lutfi Adiatma Bonifacius Vicky Indriyono Bonifacius Vicky Indriyono, Bonifacius Vicky Brahmantha, Gede Putra Aditya Budi, Agung Prasetio Buyut Khoirul Umri Cahya Pangestu, Galang Candra Adipradana Candra Aditya Pinuyut Carolina, Vinnesa Patricia Catur Iswahyudi Catur Iswahyudi Catur Riyono Heri Wibowo Cecep Yedi Permana Chan Uswatun Khasanah Chavid Syukri Fatoni Christina Andriyani Constantin Menteng D. Diffran Nur Cahyo Dalillah Razan S Danar Putra Pamungkas, Danar Putra Dandi Sunardi Dany Fajar Kristanto Saputro Wibowo David Agustriawan Dede Sandi Dedy Ikhsan Dedy Sugiarto Deny Nugroho Triwibowo Dewi Yustika Lakoro Dhana Aulia Ayu Kurniawan Dhanar Intan Surya Saputra Dhani Ariatmanto DHANI ARIATMANTO Dhani Ratna Sari Dhani Ratna Sari, Dhani Ratna Dibyo Sudarsono Dimaz Arno Prasetio Dina Juni Marianti Dloifur Rohman Al Ghifari Donni Prabowo Donny Yulianto Dwi Ahmad Dzulhijjah Dwi Hartanto, Anggit Dwi Hartono, Anggit Dwi Rahayu Dwi Yuli Prasetyo Edhy Sutanta (Jurusan Teknik Informatika IST AKPRIND Yogyakarta) Edi, Mohammad Eko Boedijanto, Eko Eko Darmanto Eko Pramono Eko Pramono Eko Pramono Eko Pramono Eko Purwanto Elim, Marthinus Ikun Elvis Pawan Elvis Pawan Emha T. Luthfi Emha T. Luthfi, Emha T. Emha Taufik Lutfi Emha Taufiq Lutfi Emha Taufiq Lutfi, Emha Taufiq Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emilya Ully Artha Emilya Ully Artha Enie Yuliani Enni Lindrawati Erwin Syahrudin Esha Alma'arif Fachruddin Edi Nugroho Saputro Fahmi Ilmawan Fahry, Fahry Fail Amir Faisal Fadhila Fajar Ardanu Fajar Rohman Hariri Fajar Surya Putro Farid Fitriadi Fariz Zakaria Fathoni Dwiatmoko Fatoni, Chavid Syukri Fendi Sumanto Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Fersellia, Fersellia Fidya Farasalsabila Firdaus, M. Haikal Firdiyan Syah Firdiyan Syah Firstyani Imannisa Rahma Firstyani Imannisa Rahma Firza Septian Fitrah Eka Susilawati Fitriana, Frizka Fitriani Fitriani Fitrony, Fachri Ayudi Gabriel Bintang Timur Gardyas Bidari Adninda Ghifari, Dloifur Rohman Al Gusti F Rahman Gusti Fathur Rakhman Habib, Muhammad Hafidh Rezha Maulana Hafidz Sanjaya Hafidz Sanjaya, Hafidz Hafiz Ridha Pramudita Hafiz Ridha Pramudita, Hafiz Ridha Halim Bayuaji Sumarna Hamdani, Nahrowi Hamdikatama, Bimantyoso Hanafi Hanafi Hanafi Hanafi Hanafi Hani Setiani Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta HANIF AL FATTA Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta Hanif Al-Fatta Hardita, Veny Cahya Hartanto, Anggit Dwi Hartatik Hary Susanto Hasna Nirfya Rahmandhani Hastari Utama Hedy Leoni Helmawati, Nita Henderi . HENDRA SETIAWAN Hendrik Setiawan, Hendrik Herda Dicky Ramandita Herlandro Tribiakto Hidayat, Jati Arif Hikmianto, Riki Hirmayanti Hirmayanti, Hirmayanti Hudha, Yans Safarid I Dewa Bagas Suryajaya, I Dewa Bagas I Wayan Rangga Pinastawa Idris Idris Idris Idris Imam Ainuddin P Ina Sholihah Widiati, Ina Sholihah Indarto Indarto Irawan, Ridwan Dwi Irawan, Rio Irma Yanti Irsyad Khalid Ilyas Irwan Siswanto Iskandar, Ahmad Fikri Isra Andika Bakhri Ivan Rifky Hendrawan Ivan Rifky Hendrawan Ivan Rifky Hendrawan Jangkung Tri Nugroho Januario Freitas Araujo Bernardo Jihadul Akbar Juni Marianti, Dina Kartikasari Kusuma Agustiningsih Kasim, Rafli Junaidi Khifni Beyk Ahmad Khoirunnita, Aulia Khusnawi Khusnawi Krisnawati Krisnawati Kriswantoro, Andi Kurniawan, Mei Kurniawan, Muhammad Bayu Kurniawan, Muhammad Bayu Kusnawi Kusnawi KUSRINI Kusrini Kusrini, Kusrini Kuswantoro, RB. Hendri Langgeng Hadi Prasetijo Lestari, Verra Budhi Lewu, Retzi Lindrawati, Enni Lisa Dinda Yunita M Imam Budi Laksamana M. Imam Budi Laksamana M. Imam Budi Laksamana M. Nuraminudin M. Rudyanto Arief M. Rudyanto Arief M. Rudyanto Arief M. RUDYANTO ARIEF M. Rudyanto Arief M. Suyanto M. Suyanto, M. M. Syafri Lamato M. Ulil Albab M. Zainal Arifin M. Ziaurrahman Ma'ruf Aziz Muzani Mahdi Ridho Mahmud Zunus Amirudin Marianti, Dina Juni Maringka, Raissa Martina Endah Pratiwi Maulana Brama Shandy Megantara, Nugraha Asthra Mei P Kurniawan Mei P Kurniawan Mei P.Kurniawan MEI PARWANTO KURNIAWAN Miftah Alfian Firdausy Mochammad Yusa Mochammad Yusa Mochammad Yusa Mochammad Yusa, Mochammad Moh Muhtarom Mohammad Diqi Mohammad Edi Monalisa Fatmawati Sarifah Moniva, Anip Mudawil Qulub Muh Adha Muh Adha Muh Wal Ikram Muh Wal Ikram Muhamad Fatahillah Z Muhamad Paliya Sadana Muhamad Ridwan Muhammad Akbar Maulana Muhammad Altoumi Alsyaibani Muhammad Anwar Fauzi Muhammad Arfina Afwani Muhammad Fadli Muhammad Fadly Muhammad Fajrian Noor Muhammad Firdaus Abdi Muhammad Ilyas Prakanada Muhammad Lathifuddin Arif Muhammad Noor Arridho Muhammad Noor Arridho Muhammad Paliya Sadana Muhammad Resa Arif Yudianto Muhammad Ricky Perdana Putra Muhammad Rosikhu Muhammad Rusdi Rahman Muhammad Surahmanto Muhammad Syaiful Anam Muhammad Syukri Mustafa Muhammad Syukri Mustafa, Muhammad Syukri Mukhadimah Mursyid Ardiansyah Mutiara Dwi Anggraini NABILA OPER NAHROWI HAMDANI Nahrun Hartono Nahrun Hartono, Nahrun Nalda Kresimo Negoro Napianto, Riduwan Nasiri, Asro Ngaeni, Nurus Sarifatul Ngajiyanto, Ngajiyanto Ni Nyoman Utami Januhari, Ni Nyoman Nita Helmawati Nova Noor Kamala Sari Nugroho Setio Wibowo Nugroho, Jangkung Tri Nugroho, Muhammad Agung Nuk Ghurroh Setyoningrum Nuk Ghurroh Setyoningrum Nur Hamid Sutanto Nur Hamid Sutanto Nur?aini, Nur?aini Nura Nugraha, Icha Nurcahyo, Azriel Christian Nurfaizah Nurfaizah Nurfajri Asfa Nurhasan Nugroho Nuri Cahyono Nurmasani, Atik Nurul Ilma Hasana Kunio Nurul Pratiwi, Annisa Okfan Rizal Ferdiansyah Oktariani, Deta Olivia Maria Inacio Tavares Omar Muhamammad Altoumi Alsyaibani Omar Muhammad Altoumi Alsyaibani Pangera, Abas Ali Patmawati Hasan Pebri Antara Pebri Antara Prabowo Budi Utomo Pramudyantoro, Arvi Pranata, Caraka Aji Prasetio, Agung Budi Prasetyo, Ade Prasetyo, Yoga Adi Pratama, Rendy Bagus Pratama, Zudha Prayoga, Dimas pujiharto, eka wahyu Pulungan, Linda Nurul Taqwa Purnawan Purnawan Purwidiantoro, Moch. Hari Purwoko, Agus Putra, Muhammad Ricky Perdana Putu Putrayasa Qolbun Salim As Shidiqi Qolbun Salim As Shidiqi Raditya Maulana Anuraga Rahardyan Bisma Setya Putra Rahmad Ardhani Rahmandhani, Hasna Nirfya Rahmat Rahmat Rahmat Taufik R.L Bau Rahmatullah, Sidik Rakhma Shafrida Kurnia Ramadoni, Ramadoni Rasyida, Zulfa Raynaldi Fatih Amanullah Resty Wulanningrum Reyhan Dwi Putra Reyhan Dwi Putra Rhomita Sari Ria Andriani Ricki Firmansyah Rifki Fahmi Rifqi Anugrah Rifqi Mizan Aulawi Rifqi Mulyawan Riska Kurniyanto Abdullah Risma, Vita Melati Rismayani Rismayani Riyanto Riyanto Rizki Firdaus Mulya Rizky Arya Kurniawan Rizky Handayani Rizky Handayani Rizqa Luviana Musyarofah Rizy, M. Alfa Rodney Maringka Ronaldus Morgan James Roshandri, Wien Fitrian Roshandri, Wien Fitrian S, Muhammad Sabri Safor Madianto Saiful Bahri Samsul Bahri Samuel Adhi Bagaskoro Sapta Hary Surya Wibowo Saputra, Artha Gilang Saputra, Artha Gilang Sarah Bunda Desi Bawan Sarah Bunda Desy Bawan Sari, Rita Novita Sari, Yunita Sartika Sarkawi - Sartje Mala Rangkoly Sasoko, Wasis Haryo Selamet Riadi Selvi Marcellia Selvy Megira Setiawan Budiman Setiawan, Bambang Abdi Setiawan, Hendi Setya Putra, Rahardyan Bisma Sidiq Wahyu Surya Wijaya Sigit Sugiyanto Sigit Suryono Siswo Utomo, Mardi Slameto, Andika Agus Sodikin, Muh Ikbal Sofyan Pariyasto Sofyawati, Siti Sri Hartati Sri Hartati Sri Wahyuni Sri Yanto Qodarbaskoro Subastian Wibowo Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan, Sudarmawan Sudirman, San Sukoco Sukoco Sukoco Sukoco Sukrisno Amikom Suliswaningsih Suliswaningsih Suparyati Suparyati Supriadi, Oki Akbar Surya Ade Saputera Surya, Satria Dwi Suryono, Sigit Suryono, Wachid Daga Sutanto, Nur Hamid Sutrisno Sutrisno Suwanto Raharjo Suwanto Suwanto Suyadi - Suyatmi Suyatmi Swastikawati, Claudia Syah, Firdiyan Syah, Firdiyan Syahrudin, Erwin Syarham, Syarham Tamaulina Br Sembiring Tamrizal A. M. Tamsir, Kurniawati Tantoni, Ahmad Tantoni, Ahmad Teguh Ansyor Lorosae Tikasni, Elisa Tinuk Agustin Tommy Dwi Putra TONNY HIDAYAT Toto Indriyatmoko Toto Rusianto Tri Amri Wijaya Tri Yusnanto Triana Triana Triwerdaya, Aji Tuhpatussania, Siti Tutut Maitanti Ulinuha, Hinova Rezha Veny Cahya Hardita Verra Budhi Lestari Verra Budhi Lestari Vian Ardiyansyah Saputro Wahyu Ciptaningrum Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat wahyuni, wenti ayu Wicaksono, Sherif Aji Widijanuarto, Satyo Widjiyati, Nur Wijaksana, Candra Putra Wijaya, Tri Amri Yans Safarid Hudha Yanuargi, Bayu Yaqin, Aiinul Yefta Tolla Yetman Erwadi Yohanes Aryo Bismo Raharjo Yosef Murya Kusuma Ardhana Yulianto Mustaqim Yulita Fatma Andriani Yumarlin MZ Yusa, Mochammad Zakaria, Fariz Zitnaa Dhiaaul Kusnaa Washilatul Arba'ah Zitnaa Dhiaaul Kusnaa Washilatul Arba’ah Zitnaa Dhiaaul Kusnaa Washilatul Arba’ah Zulfa Rasyida Zulpan Hadi