p-Index From 2021 - 2026
29.181
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IJCCS (Indonesian Journal of Computing and Cybernetics Systems) TEKNIK INFORMATIKA Jurnal Informatika Dinamik Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi AMIKOM ICT AWARD 2010 Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris Jurnal Buana Informatika Jurnal Sarjana Teknik Informatika Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Dinamika Informatika Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika) Jurnal technoscientia Jurnal Teknologi Jurnal Pseudocode Jurnal Teknologi Informasi dan Ilmu Komputer Telematika Jurnal Edukasi dan Penelitian Informatika (JEPIN) Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto) JUITA : Jurnal Informatika Proceedings Konferensi Nasional Sistem dan Informatika (KNS&I) Seminar Nasional Informatika (SEMNASIF) CESS (Journal of Computer Engineering, System and Science) Proceeding SENDI_U Jurnal IPTEK-KOM (Jurnal Ilmu Pengetahuan dan Teknologi Komunikasi) Jurnal Inspiration KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Proceeding of the Electrical Engineering Computer Science and Informatics PROtek : Jurnal Ilmiah Teknik Elektro Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Creative Information Technology Journal AT-Tahdzib: Jurnal Studi Islam dan Muamalah SISFOTENIKA IJCIT (Indonesian Journal on Computer and Information Technology) Jurnal Ilmiah Universitas Batanghari Jambi INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi JIKO (Jurnal Informatika dan Komputer) JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Pilar Nusa Mandiri Syntax Literate: Jurnal Ilmiah Indonesia CogITo Smart Journal InComTech: Jurnal Telekomunikasi dan Komputer Insect (Informatics and Security) : Jurnal Teknik Informatika Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING Jurnal Komtika (Komputasi dan Informatika) JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal Informatika Universitas Pamulang Applied Information System and Management Jurnal Sinergitas PkM & CSR Jurnal Sisfokom (Sistem Informasi dan Komputer) ILKOM Jurnal Ilmiah RESEARCH : Computer, Information System & Technology Management INTECOMS: Journal of Information Technology and Computer Science JurTI (JURNAL TEKNOLOGI INFORMASI) Angkasa: Jurnal Ilmiah Bidang Teknologi Jiko (Jurnal Informatika dan komputer) MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer CYBERNETICS Digital Zone: Jurnal Teknologi Informasi dan Komunikasi J-SAKTI (Jurnal Sains Komputer dan Informatika) Journal on Education JURTEKSI Jurnal Informasi dan Komputer Multitek Indonesia : Jurnal Ilmiah Indonesian Journal of Applied Informatics Jurnal Manajemen Informatika Jambura Journal of Informatics JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) EXPLORE ComTech: Computer, Mathematics and Engineering Applications CSRID (Computer Science Research and Its Development Journal) Jurnal Ilmiah Sinus Informasi Interaktif Majalah Ilmiah Bahari Jogja CCIT (Creative Communication and Innovative Technology) Journal EDUMATIC: Jurnal Pendidikan Informatika Jurnal Abdimas PHB : Jurnal Pengabdian Masyarakat Progresif Humanis Brainstorming M A T H L I N E : Jurnal Matematika dan Pendidikan Matematika TAFAQQUH: Jurnal Hukum Ekonomi Syariah Dan Ahwal Syahsiyah Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Technologia: Jurnal Ilmiah JURNAL TAHURI SENSITEK E-JURNAL JUSITI : Jurnal Sistem Informasi dan Teknologi Informasi Aisyah Journal of Informatics and Electrical Engineering Jurnal Manajemen Informatika dan Sistem Informasi Journal of Information Systems and Informatics TAJDID KURVATEK Jurnal Teknologi Informasi : Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika Jurnal Tecnoscienza Respati IT (INFORMATIC TECHNIQUE) JOURNAL JOURNAL OF INFORMATION SYSTEM MANAGEMENT (JOISM) Journal of Intelligent Decision Support System (IDSS) G-Tech : Jurnal Teknologi Terapan SOSIOEDUKASI : JURNAL ILMIAH ILMU PENDIDIKAN DAN SOSIAL International Journal of Advances in Data and Information Systems Jurnal Sistem Komputer dan Informatika (JSON) Journal of Innovation Information Technology and Application (JINITA) Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Bulletin of Computer Science and Electrical Engineering (BCSEE) Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration Jurnal TIKOMSIN (Teknologi Informasi dan Komunikasi Sinar Nusantara) TEPIAN Infokes : Jurnal Ilmiah Rekam Medis dan Informasi Kesehatan JURNAL TEKNOLOGI TECHNOSCIENTIA Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia Journal of Electrical Engineering and Computer (JEECOM) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Mitra Mahajana: Jurnal Pengabdian Masyarakat Jurnal Pendidikan dan Teknologi Indonesia International Journal of Computer and Information System (IJCIS) Jurnal Informatika dan Teknologi Komputer ( J-ICOM) International Research on Big-data and Computer Technology (IRobot) Bulletin of Computer Science Research INFOSYS (INFORMATION SYSTEM) JOURNAL J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen International Journal of Informatics, Information System and Computer Engineering (INJIISCOM) International Journal of Research and Applied Technology (INJURATECH) Jurnal Ekonomi dan Teknik Informatika International Journal Artificial Intelligent and Informatics Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi Jurnal Dinamika Informatika (JDI) Jurnal Nasional Teknik Elektro dan Teknologi Informasi sudo Jurnal Teknik Informatika Jurnal Informatika Teknologi dan Sains (Jinteks) Duta.com : Jurnal Ilmiah Teknologi Informasi dan Komunikasi Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram EXPLORE Journal of Comprehensive Science Techno Indonesian Journal Computer Science (ijcs) Jurnal Educative: Journal of Educational Studies Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer JURNAL TEKNIK INDUSTRI Jurnal Pendidikan Indonesia (Japendi) Cerdika: Jurnal Ilmiah Indonesia International Journal of Advanced Science Computing and Engineering Innovative: Journal Of Social Science Research J-Icon : Jurnal Komputer dan Informatika Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) SmartComp Fahma : Jurnal Informatika Komputer, Bisnis dan Manajemen Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Teknomatika: Jurnal Informatika dan Komputer Proceeding of International Conference on Information Science and Technology Innovation (ICoSTEC) Tafaqquh : Jurnal Hukum Ekonomi Syariah dan Ahwal Syahsiyah Explore The Indonesian Journal of Computer Science Scientific Journal of Informatics Jurnal Teknologi KOPEMAS International Journal of Information Engineering and Science At-Tahdzib: Jurnal Studi Islam dan Muamalah semanTIK JESICA Jurnal Sistem Informasi Komputer dan Teknologi Informasi JuTISI (Jurnal Teknik Informatika dan Sistem Informasi) Journal of Business, Social, Management, and Technology Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

Comparative Analysis of ADDIE and ASSURE Models in Designing Learning Media Applications Rahmandhani, Hasna Nirfya; Utami, Ema
Jurnal Educative: Journal of Educational Studies Vol. 7 No. 2 (2022): December 2022
Publisher : Universitas Islam Negeri Sjech M. Djamil Djambek Bukittinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30983/educative.v7i2.6005

Abstract

Learning media is an important part of producing quality learning. Therefore, learning media development is needed that supports the learning objectives. Several models can be used in designing learning media, such as the ADDIE and ASSURE models. The ADDIE model has the following development steps: (1) Analysis, (2) Design, (3) Development, (4) Implementation, and (5) Evaluation. While the ASSURE model has the following development steps: (1) Analyzing learners, (2) Stating learning objectives, (3) Selecting media and methods, (4) Utilizing media and methods, (5) Requiring learner response, (6) Evaluating. The purpose of this study is to compare the use of the ADDIE model and ASSURE model according to the learning objectives. The research was conducted using the literature review method from 36 articles and books that discuss the making of learning media with ADDIE and ASSURE design models. The literature review references were taken from Google Scholar with publication years between 2012 - 2022. The results of this study show that the use of the ADDIE design model is more effective in designing learning media applications because it focuses on material content and application feasibility so that students can use it optimally to achieve goals. Meanwhile, the ASSURE model is more effective for designing learning systems or teaching materials because itfocuses on the application of learning media design models that can attract student interest to generate learning motivation.
Pengaruh Komposisi Split Data Terhadap Performa Akurasi Analisis Sentimen Algoritma Naïve Bayes dan SVM Prasetyo, Yoga Adi; Utami, Ema; Yaqin, Ainul
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 2 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i2.9188

Abstract

Analisis sentimen merupakan bidang yang penting dalam pengolahan bahasa alami dan aplikasi sosial media modern. Penelitian ini menginvestigasi pengaruh dari variasi komposisi split data terhadap performa akurasi model analisis sentimen menggunakan SVM dan Naive Bayes. Metode eksperimen menggunakan variasi dari teknik k-fold cross-validation untuk membandingkan hasil dari berbagai proporsi pembagian data latih dan uji. Hasil eksperimen menunjukkan bahwa komposisi split data memiliki dampak signifikan terhadap performa akurasi kedua algoritma, dengan beberapa proporsi split data menghasilkan hasil yang lebih konsisten dan stabil dibandingkan dengan yang lain. Temuan ini memberikan wawasan yang berharga dalam pengaturan praktis untuk pelatihan model analisis sentimen yang lebih efektif dan andal. Teknik ekstraksi fitur yang digunakan Term Frequency-Inverse Document Frequency (TF-IDF), dengan algoritma klasifikasi Naive Bayes dan Support Vector Machine (SVM). Performa model dievaluasi menggunakan metrik seperti akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa signifikan model SVM dengan rasio 80:20 mencapai akurasi 76,66% dan F1-score 77 %, dibandingkan metode SVM dan Naïve Bayes dengan rasio lainnya. 
Riset Jurnal Literatur : Penggunaan Metode Stemming Pada Bahasa Daerah Melayu-Ambon Carolina, Vinnesa Patricia; Utami, Ema; Yaqin, Ainul
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 1 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i1.8517

Abstract

Stemming dalam bahasa Ambon merupakan tantangan yang signifikan karena lexiconnya yang luas, mencakup sekitar 127.000 kata dasar seperti yang tercatat dalam Kamus Besar Bahasa Indonesia. Hal ini disebabkan oleh kompleksitas stemming yang timbul dari tugas untuk mengekstrak kata-kata dasar dari kata-kata yang memiliki imbuhan, yang memerlukan penghapusan berbagai imbuhan seperti awalan, sisipan, akhiran, dan kombinasinya. Proses ini memiliki pentingan yang besar karena sangat memengaruhi kualitas hasil analisis.Untuk mengatasi kompleksitas linguistik ini, beberapa algoritma stemming telah dikembangkan. Algoritma-algoritma ini termasuk Nazief & Adriani, Enhanced Confix Stripping, Sastrawi, dan Tala, masing-masing menawarkan teknik unik untuk menangani kompleksitas stemming dalam bahasa Indonesia. Pemilihan algoritma yang tepat sangat penting untuk memastikan akurasi dan kehandalan proses stemming dalam kerangka analisis.Dalam penelitian stemming yang telah dilakukan, terdapat variasi dalam metode-metode yang digunakan. Algoritma stemming yang paling sering digunakan adalah Nazief & Adriani, dengan 17 kasus tercatat. Kemudian, Enhanced Confix Stripping juga cukup populer dengan 12 kasus. Sastrawi, meskipun dengan frekuensi yang lebih rendah, tetap digunakan dalam 4 kasus. Sedangkan algoritma Tala, meskipun jarang digunakan, tetap muncul dalam 1 kasus. Hal ini mencerminkan diversitas dan pilihan yang tersedia dalam memilih metode stemming yang sesuai dengan kebutuhan penelitian. Meskipun demikian, hal ini mungkin terkait dengan faktor-faktor seperti proyek penelitian yang sedang berlangsung, ketersediaan dana, atau kondisi eksternal lainnya yang memengaruhi produksi penelitian pada periode tersebut. Dengan demikian, penelitian tentang stemming tetap menjadi topik yang menarik dan relevan, dengan potensi untuk terus berkembang dan memberikan kontribusi yang berarti dalam pemrosesan teks dan penelitian linguistik di masa mendatang.
Hybrid ViT–CNN Model for Automatic Monkeypox Skin Lesion Diagnosis Triwerdaya, Aji; Utami, Ema
Journal of Electrical Engineering and Computer (JEECOM) Vol 7, No 2 (2025)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v7i2.12795

Abstract

Monkeypox is a re-emerging zoonotic disease that presents with skin lesions resembling other dermatological conditions, which complicates reliable diagnosis. This study introduces a hybrid deep learning framework that integrates Vision Transformers (ViT) with Convolutional Neural Networks (CNN) for automatic classification of monkeypox lesions. Three hybrid scenarios were evaluated: ViT + DenseNet121, ViT + ResNet50, and ViT + InceptionV3.A combined dataset of PAD-UFES-20 and the Monkeypox Skin Lesion Dataset (MSLD), containing more than 2,500 dermoscopic images resized to 224×224 pixels, was used to train all models from scratch. Unlike prior works that relied on transfer learning and extensive augmentation, this study establishes a reproducible baseline without such enhancements. Model performance was assessed using accuracy, precision, recall, F1-score, and ROC-AUC, as well as computational efficiency metrics including training time and inference speed.The results show that hybrid ViT–CNN architectures achieved consistently better performance than single networks. Among the three scenarios, ViT + InceptionV3 provided the most balanced outcome, This approach combines reliable diagnostic accuracy with efficient inference. These findings demonstrate the value of integrating CNN-based local feature extraction with the global contextual modeling capacity of ViTs.This study establishes an experimental benchmark for monkeypox lesion classification and identifies hybrid architectures as a viable direction for future development. The framework can be extended with transfer learning, advanced augmentation, and lightweight optimization techniques, supporting potential deployment in resource-limited healthcare environments.
Prediksi Harga Emas Dengan Menambahkan Variabel Covid-19 Menggunakan Metode Naïve Bayes Cahya Pangestu, Galang; Utami, Ema; Dwi Hartanto, Anggit
Journal of Comprehensive Science Vol. 3 No. 1 (2024): Journal of Comprehensive Science (JCS)
Publisher : Green Publisher Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59188/jcs.v3i1.602

Abstract

COVID-19 atau sebelumnya dikenal sebagai virus corona merupakan sebuah pandemi yang sangat di waspadai di seluruh dunia dan negara Indonesia saat ini. Pandemi COVID-19 dapat mengakibatkan beberapa dampak di berbagai sektor, terutama di sektor ekonomi seperti harga saham dan emas. Emas merupakan salah satu logam mulia yang cukup diminati oleh masyarakat serta dapat berubah sewaktu-waktu sehingga membuat investor perlu untuk melakukan prediksi harga emas. Salah satu metode atau algoritma yang dapat digunakan untuk memprediksi harga adalah Naïve Bayes Classifier (NBC). penelitian ini menggunakan 7 variabel untuk memprediksi harga emas yaitu variabel harga emas masa lalu, kurs dollar, kurs euro, harga minyak mentah dunia, jumlah kasus positif COVID-19, jumlah kasus sembuh dari COVID-19, dan jumlah kematian yang disebabkan COVID-19 di Indonesia. Dataset yang digunakan diperoleh dari berbagai sumber yang terpercaya yang dimulai periode tanggal 2 maret 2020 – 29 oktober 2020, pengujian nantinya akan akan dilakukan dengan berbagai scenario yang berbeda-beda. Hasil pengujian tingkat akurasi tertinggi dalam penelitian ini yaitu sebesar 83% yang terdapat pada 3 scenario pengujian yang berbeda, sedangkan pengaruh variable COVID-19 pada tingkat akurasi menggunakan metode naïve bayes hasilnya tidak terlalu signifikan
Deteksi Tumor Otak Melalui Gambar MRI Berdasarkan Vision Transformers dengan Tensorflow dan Keras Supriadi, Oki Akbar; Utami, Ema; Ariatmanto, Dhani
Jurnal Informatika Universitas Pamulang Vol 8 No 3 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i3.32707

Abstract

Brain tumor disease is a serious and complex health problem worldwide. Early and accurate detection of brain tumors has a major impact on patient care and prognosis. Magnetic Resonance Imaging (MRI) has become one of the main diagnostic tools in detecting brain tumors, manual interpretation of MRI images requires high clinical expertise and requires a long time. In recent years, advances in deep learning techniques and image processing have opened up new opportunities in the detection of brain tumors via MRI images. Deep learning techniques, especially the use of Vision Transformers (ViTs) models, have been successful in various complex pattern recognition tasks in images. The Vision Transformers model was chosen due to the performance improvements shown in many image recognition tasks, outperforming convolutional neural networks (CNN) based methods. Tensorflow and Keras are used as frameworks for development and training models, which have been proven effective and efficient in various previous studies. This study focuses on the performance of the Vision Transformer (ViT) in detecting brain tumors through two Magnetic Resonance Imaging (MRI) image datasets, with different numbers of datasets, as well as the maximum accuracy value that can be achieved from the ViT architecture. From several experimental parameters on ViT, the number of datasets and iterations, the results obtained from the first dataset with 253 image data obtained an accuracy value of 88%, and in the second study by combining the two datasets, with 3.123 data images obtained an accuracy of 97.9%.
CATTLE BODY WEIGHT PREDICTION USING REGRESSION MACHINE LEARNING Anjar Setiawan; Utami, Ema; Ariatmanto, Dhani
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 2 (2024): JUTIF Volume 5, Number 2, April 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.2.1521

Abstract

Increasing efficiency and productivity in the cattle farming industry can have a significant economic impact. Cow health and productivity problems directly impact the quality of the meat and milk produced. In the cattle farming industry, it can help predict cow weight oriented to beef and milk quality. The importance of predicting cow weight for farmers is to monitor animal development. Meanwhile, for traders, knowing the animal's weight makes it easier to calculate the price of the animal meat they buy. This research aims to predict cow weight by increasing the results of smaller MAE values. The methods used are linear Regressor (LR), Random Forest Regressor (RFR), Support Vector Regressor (SVR), K-Neighbors Regressor (KNR), Multi-layer Perceptron Regressor (MLPR), Gradient Boosting Regressor (GBR), Light Gradient boosting (LGB), and extreme gradient boosting regressor (XGBR). Producing cattle weight predictions using the SVR method produces the best values, namely mean absolute error (MAE) of 0.09 kg, mean absolute perception error (MAPE) of 0.02%, root mean square error (RMSE) of 0.08 kg, and R-square of 0.97 compared to with other algorithm methods and the results of statistical correlation analysis showed several significant relationships between morphometric variables and live weight.
STACKING ENSEMBLE LEARNING AND INSTANCE HARDNESS THRESHOLD FOR BANK TERM DEPOSIT ACCEPTANCE CLASSIFICATION ON IMBALANCED DATASET Bangun Watono; Ema Utami; Dhani Ariatmanto
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 4 (2024): JUTIF Volume 5, Number 4, August 2024 - SENIKO
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.4.2022

Abstract

Bank term deposits are a popular banking product with relatively high interest rates. Predicting potential customers is crucial for banks to maximize revenue from this product. Therefore, bank term deposits acceptance classification is an important challenge in the banking industry to optimize marketing strategies. Previous studies have been conducted using machine learning classification techniques with the imbalanced Bank Marketing Dataset from the UCI Repository. However, the accuracy results obtained still need to be improved. Using the same dataset, this study proposes an Instance Hardness Threshold (IHT) undersampling technique to handle imbalanced datasets and Stacking Ensemble Learning (SEL) for classification. In this SEL, Decision Tree, Random Forest, and XGBoost are selected as base classifiers and Logistic Regression as meta classifier. The model trained on SEL with the dataset undersampled using IHT shows a high accuracy rate of 98.80% and an AUC-ROC of 0.9821. This performance is significantly better than the model trained with the dataset without undersampling, which achieved an accuracy of 90.30% and an AUC-ROC of 0.6898. The findings of this research demonstrate that implementing of the suggested IHT undersampling technique combined with SEL has been evaluated to effectively enhance the performance of term deposit classification on the dataset.
Tuberculosis Diagnosis From X-Ray Images Using Deep Learning And Contrast Enhancement Techniques Risma, Vita Melati; Utami, Ema
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4315

Abstract

Tuberculosis (TB) is an infectious disease that poses a global health threat. Early diagnosis through chest X-ray (CXR) imaging is effective in reducing transmission and improving patient recovery rates. However, the limited number of radiologists in high TB burden areas hampers rapid and accurate detection. This study aims to improve TB diagnosis accuracy using deep learning models. Convolutional Neural Networks (CNN) are applied to analyze CXR images to support automated detection in regions with limited radiology personnel. The method involves image processing using Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance image quality. A public dataset consisting of 2,188 images was used, with preprocessing steps including resizing, normalization, and augmentation. The DenseNet201 model was employed as the main architecture, trained for 10 epochs with various batch sizes to evaluate its performance. Results show that the combination of CLAHE and DenseNet201 achieved the highest accuracy of 94.84%. Image quality enhancement with CLAHE proved to improve accuracy compared to models without preprocessing. This research contributes to enhancing the efficiency of automated early TB detection, reducing reliance on radiologists, and accelerating clinical decision-making.
Improving Infant Cry Recognition Using MFCC And CNN-Based Audio Augmentation Setyoningrum, Nuk Ghurroh; Utami, Ema; Kusrini, Kusrini; Wibowo, Ferry Wahyu
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4373

Abstract

Recognizing infant cries is essential for understanding a baby's needs; however, previous research has struggled with imbalanced datasets and limited feature extraction techniques. Conventional methods utilizing CNN without data augmentation often failed to accurately classify minority classes such as belly pain, burping, and discomfort, resulting in biased models that predominantly recognized majority classes. This study proposes an MFCC-based data augmentation pipeline, incorporating time stretching, pitch scaling, noise addition, polarity inversion, and random gain adjustments to increase dataset diversity and enhance model generalization. By applying this approach, the dataset size was expanded from 457 to 8,683 samples, and a CNN model with three convolutional layers, ReLU activation, and max pooling was trained for cry pattern classification. The results indicate a substantial accuracy improvement from 78% to 98%, with F1-scores for minority classes rising from 0.00 to above 0.90, confirming that augmentation effectively addresses dataset imbalance. This research advances computer science and artificial intelligence, particularly in audio signal processing and deep learning for healthcare applications, by demonstrating the role of data augmentation in improving cry classification performance. Future directions include integrating multimodal data (visual and physiological signals), exploring advanced deep learning architectures, and developing real-time applications for smart baby monitoring systems to further enhance infant cry recognition technology.
Co-Authors , Anggit Dwi Hartanto A.A. Ketut Agung Cahyawan W AA Sudharmawan, AA Abdul Malik Zuhdi Abdullah Ardi Abdullah, Riska K Abdulrahmat E Ahmad Abyan Fauzi Widihasani Achmad Yusron Arif Ade Pujianto Adi Surya Adiatma, Biva Candra Lutfi Adipradana, Candra Afif, Muhammad Sholih Afifah Nur Aini Afis Julianto Aflahah Apriliyani Afu Ichsan Pradana Agun Nurul Widiyanto Agung Budi Prasetio Agung Budi Prasetio Agung Budi Prasetio Agung Budi Prasetyo Agung Dwi Cahyanto Agung Susanto Agus Fathurahman Agus Fatkhurohman AGUS PURWANTO Agustin, Tinuk Agustina Srirahayu Agustina, Nova Ahmad Fauzi Ahmad Febri Diansyah Ahmad Fikri Iskandar Ahmad Fikri Iskandar Ahmad Fikri Iskandar Ahmad Hajar Ahsan, Muhammad Rafiqudin Ahsan, Muhammad Rafiqudin Ain, Quratul Ainul Yaqin Ainul Yaqin Ainul Yaqin Aji Said Wahyudi Hidayat Akhmad Dahlan Al Fathir As, Rahmat Saudi Aldy A Kulakat Alfansani, Abdul Rauf Alfin Mahadi Alimuddin Yasin Alin, Octhavia Almi Yulistia Alwanda Alqowiy, Mohd Qorib Alsyaibani, Omar Muhammad Altoumi Alva Hendi Muhammad Alva Hendi Muhammad Alva Hendi Muhammad Alvhinia Meinda Amitaba Alvian Trias Kurniawan Alvian Trias Kurniawan Alvina Felicia Watratan Amir Fatah Sofyan Amir, Fail Amrullah, Ahmad Afief Amrullah, Ahmad Afief Amrullah, Yusuf Amri Andang Wijanarko Andhika Wisnu Widyatama Andhika Wisnu Widyatama Andi Sunyoto Andrie Prajanueri Kristianto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto Anggit Dwi Hartanto, Anggit Dwi Anggit Hartanto Anggriandi, Dendi Anip Moniva Anisa Rahmanti Anisya Nursyah Gusman Anjar Setiawan Annisa Rahayu P Antara, Pebri Anwar Sadad Ardi, Abdullah Arfian Hendro Priyono Arham Rahim Ari Rudiyan Arief Setyanto Arief, M.Rudyanto Arif Nur Rohman Arif Rahman Arif Santoso Arif Sutikno Arif, Achmad Yusron Aris Setiyadi aristin chusnul khotimah Arli Aditya Parikesit Armadiyah Amborowaty Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Armadyah Amborowati Arvi Pramudyantoro Arya Luthfi Mahadika Asrawi, Hannan Asro Nasiri Asro Nasiri Asro Nasiri Asro Nasiri Asro Nasiri Asrul Abdullah Astica, Yustikamasy Atin Hasanah Aziza Devita Indraswari Bambang Sumantri, R Bagus Bangun Watono Banu Dwi Putranto Basri, Nur Faizal Bayu Setiaji Béjar, Rodrigo Martínez Betri, Tigus Juni Bety Wulan Sari Bima Widianto Bisono, Hadi Hikmadyo Biva Candra Lutfi Adiatma Bonifacius Vicky Indriyono Bonifacius Vicky Indriyono, Bonifacius Vicky Brahmantha, Gede Putra Aditya Budi, Agung Prasetio Buyut Khoirul Umri Cahya Pangestu, Galang Candra Adipradana Candra Aditya Pinuyut Carolina, Vinnesa Patricia Catur Iswahyudi Catur Iswahyudi Catur Riyono Heri Wibowo Cecep Yedi Permana Chan Uswatun Khasanah Chavid Syukri Fatoni Christina Andriyani Constantin Menteng D. Diffran Nur Cahyo Dalillah Razan S Danar Putra Pamungkas, Danar Putra Dandi Sunardi Dany Fajar Kristanto Saputro Wibowo David Agustriawan Dede Sandi Dedy Ikhsan Dedy Sugiarto Deny Nugroho Triwibowo Dewi Yustika Lakoro Dhana Aulia Ayu Kurniawan Dhanar Intan Surya Saputra DHANI ARIATMANTO Dhani Ariatmanto Dhani Ratna Sari Dhani Ratna Sari, Dhani Ratna Dibyo Sudarsono Dimaz Arno Prasetio Dina Juni Marianti Dloifur Rohman Al Ghifari Donni Prabowo Donny Yulianto Dwi Ahmad Dzulhijjah Dwi Hartanto, Anggit Dwi Hartono, Anggit Dwi Rahayu Dwi Yuli Prasetyo Edhy Sutanta (Jurusan Teknik Informatika IST AKPRIND Yogyakarta) Edi, Mohammad Eko Boedijanto, Eko Eko Darmanto Eko Pramono Eko Pramono Eko Pramono Eko Pramono Eko Purwanto Elim, Marthinus Ikun Elvis Pawan Elvis Pawan Emha T. Luthfi Emha T. Luthfi, Emha T. Emha Taufik Lutfi Emha Taufiq Lutfi Emha Taufiq Lutfi, Emha Taufiq Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emilya Ully Artha Emilya Ully Artha Enie Yuliani Enni Lindrawati Erwin Syahrudin Esha Alma'arif Fachruddin Edi Nugroho Saputro Fahmi Ilmawan Fahry, Fahry Fail Amir Faisal Fadhila Fajar Ardanu Fajar Rohman Hariri Fajar Surya Putro Farid Fitriadi Fariz Zakaria Fathoni Dwiatmoko Fatoni, Chavid Syukri Fendi Sumanto Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Fersellia, Fersellia Fidya Farasalsabila Firdaus, M. Haikal Firdiyan Syah Firdiyan Syah Firstyani Imannisa Rahma Firstyani Imannisa Rahma Firza Septian Fitrah Eka Susilawati Fitriana, Frizka Fitriani Fitriani Fitrony, Fachri Ayudi Gabriel Bintang Timur Gardyas Bidari Adninda Ghifari, Dloifur Rohman Al Gusti F Rahman Gusti Fathur Rakhman Habib, Muhammad Hafidh Rezha Maulana Hafidz Sanjaya Hafidz Sanjaya, Hafidz Hafiz Ridha Pramudita Hafiz Ridha Pramudita, Hafiz Ridha Halim Bayuaji Sumarna Hamdani, Nahrowi Hamdikatama, Bimantyoso Hanafi Hanafi Hanafi Hanafi Hanafi Hani Setiani Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta HANIF AL FATTA Hanif Al Fatta Hanif Al Fatta Hanif Al-Fatta Hardita, Veny Cahya Hartanto, Anggit Dwi Hartatik Hary Susanto Hasna Nirfya Rahmandhani Hastari Utama Hedy Leoni Helmawati, Nita Henderi . HENDRA SETIAWAN Hendrik Setiawan, Hendrik Herda Dicky Ramandita Herlandro Tribiakto Hidayat, Jati Arif Hikmianto, Riki Hirmayanti Hirmayanti, Hirmayanti Hudha, Yans Safarid I Dewa Bagas Suryajaya, I Dewa Bagas I Wayan Rangga Pinastawa Idris Idris Idris Idris Imam Ainuddin P Ina Sholihah Widiati, Ina Sholihah Indarto Indarto Irawan, Ridwan Dwi Irawan, Rio Irma Yanti Irsyad Khalid Ilyas Irwan Siswanto Iskandar, Ahmad Fikri Isra Andika Bakhri Ivan Rifky Hendrawan Ivan Rifky Hendrawan Ivan Rifky Hendrawan Jangkung Tri Nugroho Januario Freitas Araujo Bernardo Jihadul Akbar Juni Marianti, Dina Kartikasari Kusuma Agustiningsih Kasim, Rafli Junaidi Khifni Beyk Ahmad Khoirunnita, Aulia Khusnawi Khusnawi Krisnawati Krisnawati Kriswantoro, Andi Kurniawan, Mei Kurniawan, Muhammad Bayu Kurniawan, Muhammad Bayu Kusnawi Kusnawi KUSRINI Kusrini Kusrini, Kusrini Kuswantoro, RB. Hendri Langgeng Hadi Prasetijo Lestari, Verra Budhi Lewu, Retzi Lindrawati, Enni Lisa Dinda Yunita M Imam Budi Laksamana M. Imam Budi Laksamana M. Imam Budi Laksamana M. Nuraminudin M. Rudyanto Arief M. RUDYANTO ARIEF M. Rudyanto Arief M. Rudyanto Arief M. Rudyanto Arief M. Suyanto M. Suyanto, M. M. Syafri Lamato M. Ulil Albab M. Zainal Arifin M. Ziaurrahman Ma'ruf Aziz Muzani Mahdi Ridho Mahmud Zunus Amirudin Marianti, Dina Juni Maringka, Raissa Martina Endah Pratiwi Maulana Brama Shandy Megantara, Nugraha Asthra Mei P Kurniawan Mei P Kurniawan Mei P.Kurniawan MEI PARWANTO KURNIAWAN Miftah Alfian Firdausy Mochammad Yusa Mochammad Yusa Mochammad Yusa Mochammad Yusa, Mochammad Moh Muhtarom Mohammad Diqi Mohammad Edi Monalisa Fatmawati Sarifah Moniva, Anip Mudawil Qulub Muh Adha Muh Adha Muh Wal Ikram Muh Wal Ikram Muhamad Fatahillah Z Muhamad Paliya Sadana Muhamad Ridwan Muhammad Akbar Maulana Muhammad Altoumi Alsyaibani Muhammad Anwar Fauzi Muhammad Arfina Afwani Muhammad Fadli Muhammad Fadly Muhammad Fajrian Noor Muhammad Firdaus Abdi Muhammad Ilyas Prakanada Muhammad Lathifuddin Arif Muhammad Noor Arridho Muhammad Noor Arridho Muhammad Paliya Sadana Muhammad Resa Arif Yudianto Muhammad Ricky Perdana Putra Muhammad Rosikhu Muhammad Rusdi Rahman Muhammad Surahmanto Muhammad Syaiful Anam Muhammad Syukri Mustafa Muhammad Syukri Mustafa, Muhammad Syukri Mukhadimah Mursyid Ardiansyah Mutiara Dwi Anggraini NABILA OPER NAHROWI HAMDANI Nahrun Hartono Nahrun Hartono, Nahrun Nalda Kresimo Negoro Napianto, Riduwan Nasiri, Asro Ngaeni, Nurus Sarifatul Ngajiyanto, Ngajiyanto Ni Nyoman Utami Januhari, Ni Nyoman Nita Helmawati Nova Noor Kamala Sari Nugroho Setio Wibowo Nugroho, Jangkung Tri Nugroho, Muhammad Agung Nuk Ghurroh Setyoningrum Nuk Ghurroh Setyoningrum Nur Hamid Sutanto Nur Hamid Sutanto Nur?aini, Nur?aini Nura Nugraha, Icha Nurcahyo, Azriel Christian Nurfaizah Nurfaizah Nurfajri Asfa Nurhasan Nugroho Nuri Cahyono Nurmasani, Atik Nurul Ilma Hasana Kunio Nurul Pratiwi, Annisa Okfan Rizal Ferdiansyah Oktariani, Deta Olivia Maria Inacio Tavares Omar Muhamammad Altoumi Alsyaibani Omar Muhammad Altoumi Alsyaibani Pangera, Abas Ali Patmawati Hasan Pebri Antara Pebri Antara Prabowo Budi Utomo Pramudyantoro, Arvi Pranata, Caraka Aji Prasetio, Agung Budi Prasetyo, Ade Prasetyo, Yoga Adi Pratama, Rendy Bagus Pratama, Zudha Prayoga, Dimas pujiharto, eka wahyu Pulungan, Linda Nurul Taqwa Purnawan Purnawan Purwidiantoro, Moch. Hari Purwoko, Agus Putra, Muhammad Ricky Perdana Putu Putrayasa Qolbun Salim As Shidiqi Qolbun Salim As Shidiqi Raditya Maulana Anuraga Rahardyan Bisma Setya Putra Rahmad Ardhani Rahmandhani, Hasna Nirfya Rahmat Rahmat Rahmat Taufik R.L Bau Rahmatullah, Sidik Rakhma Shafrida Kurnia Ramadoni, Ramadoni Rasyida, Zulfa Raynaldi Fatih Amanullah Resty Wulanningrum Reyhan Dwi Putra Reyhan Dwi Putra Rhomita Sari Ria Andriani Ricki Firmansyah Rifki Fahmi Rifqi Anugrah Rifqi Mizan Aulawi Rifqi Mulyawan Riska Kurniyanto Abdullah Risma, Vita Melati Rismayani Rismayani Riyanto Riyanto Rizki Firdaus Mulya Rizky Arya Kurniawan Rizky Handayani Rizky Handayani Rizqa Luviana Musyarofah Rizy, M. Alfa Rodney Maringka Ronaldus Morgan James Roshandri, Wien Fitrian Roshandri, Wien Fitrian S, Muhammad Sabri Safor Madianto Saiful Bahri Samsul Bahri Samuel Adhi Bagaskoro Sapta Hary Surya Wibowo Saputra, Artha Gilang Saputra, Artha Gilang Sarah Bunda Desi Bawan Sarah Bunda Desy Bawan Sari, Rita Novita Sari, Yunita Sartika Sarkawi - Sartje Mala Rangkoly Sasoko, Wasis Haryo Selamet Riadi Selvi Marcellia Selvy Megira Setiawan Budiman Setiawan, Bambang Abdi Setiawan, Hendi Setya Putra, Rahardyan Bisma Sidiq Wahyu Surya Wijaya Sigit Sugiyanto Sigit Suryono Siswo Utomo, Mardi Slameto, Andika Agus Sodikin, Muh Ikbal Sofyan Pariyasto Sofyawati, Siti Sri Hartati Sri Hartati Sri Wahyuni Sri Yanto Qodarbaskoro Subastian Wibowo Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan, Sudarmawan Sudirman, San Sukoco Sukoco Sukoco Sukoco Sukrisno Amikom Suliswaningsih Suliswaningsih Suparyati Suparyati Supriadi, Oki Akbar Surya Ade Saputera Surya, Satria Dwi Suryono, Sigit Suryono, Wachid Daga Sutanto, Nur Hamid Sutrisno Sutrisno Suwanto Raharjo Suwanto Suwanto Suyadi - Suyatmi Suyatmi Swastikawati, Claudia Syah, Firdiyan Syah, Firdiyan Syahrudin, Erwin Syarham, Syarham Tamaulina Br Sembiring Tamrizal A. M. Tamsir, Kurniawati Tantoni, Ahmad Tantoni, Ahmad Teguh Ansyor Lorosae Tikasni, Elisa Tinuk Agustin Tommy Dwi Putra TONNY HIDAYAT Toto Indriyatmoko Toto Rusianto Tri Amri Wijaya Tri Yusnanto Triana Triana Triwerdaya, Aji Tuhpatussania, Siti Tutut Maitanti Ulinuha, Hinova Rezha Veny Cahya Hardita Verra Budhi Lestari Verra Budhi Lestari Vian Ardiyansyah Saputro Wahyu Ciptaningrum Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat Wahyu Hidayat wahyuni, wenti ayu Wicaksono, Sherif Aji Widijanuarto, Satyo Widjiyati, Nur Wijaksana, Candra Putra Wijaya, Tri Amri Yans Safarid Hudha Yanuargi, Bayu Yaqin, Aiinul Yefta Tolla Yetman Erwadi Yohanes Aryo Bismo Raharjo Yosef Murya Kusuma Ardhana Yulianto Mustaqim Yulita Fatma Andriani Yumarlin MZ Yusa, Mochammad Zakaria, Fariz Zitnaa Dhiaaul Kusnaa Washilatul Arba'ah Zitnaa Dhiaaul Kusnaa Washilatul Arba’ah Zitnaa Dhiaaul Kusnaa Washilatul Arba’ah Zulfa Rasyida Zulpan Hadi