p-Index From 2020 - 2025
20.062
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering International Journal of Power Electronics and Drive Systems (IJPEDS) IAES International Journal of Artificial Intelligence (IJ-AI) TEKNIK INFORMATIKA Jurnal Ilmu Pendidikan Tekno : Jurnal Teknologi Elektro dan Kejuruan ELKHA : Jurnal Teknik Elektro Mechatronics, Electrical Power, and Vehicular Technology Jurnal Pendidikan Sains MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Jurnal Informatika Jurnal Infinity Harmonia: Journal of Research and Education Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics Jurnal Sistem Informasi dan Bisnis Cerdas Register: Jurnal Ilmiah Teknologi Sistem Informasi Proceeding of the Electrical Engineering Computer Science and Informatics Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan JOIN (Jurnal Online Informatika) JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Knowledge Engineering and Data Science Jurnal Ilmiah Flash JURNAL MEDIA INFORMATIKA BUDIDARMA Ranah: Jurnal Kajian Bahasa Jurnal Sains dan Informatika Jurnal Inovasi Bisnis (Inovbiz) ILKOM Jurnal Ilmiah at-tamkin: Jurnal Pengabdian kepada Masyarakat SENTIA 2016 SENTIA 2015 Jurnal Teknologi Sistem Informasi dan Aplikasi Journal of Educational Research and Evaluation International Journal of Elementary Education Jurnal Ilmiah Sekolah Dasar Prosiding SAKTI (Seminar Ilmu Komputer dan Teknologi Informasi) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Performance PEDULI: Jurnal Imiah Pengabdian Pada Masyarakat Antivirus : Jurnal Ilmiah Teknik Informatika Kumawula: Jurnal Pengabdian Kepada Masyarakat Buletin Ilmiah Sarjana Teknik Elektro Mobile and Forensics International Journal of Visual and Performing Arts Journal of Robotics and Control (JRC) Jurnal Mnemonic Sains, Aplikasi, Komputasi dan Teknologi Informasi Jurnal Teknik Elektro Uniba (JTE Uniba) Frontier Energy System and Power Engineering Belantika Pendidikan Indonesian Journal of Data and Science Letters in Information Technology Education (LITE) Journal of Applied Data Sciences Science in Information Technology Letters International Journal of Engineering, Science and Information Technology International Journal of Robotics and Control Systems Abditeknika - Jurnal Pengabdian Kepada Masyarakat Anjoro : International Journal of Agriculture and Business Journal of Dinda : Data Science, Information Technology, and Data Analytics Indonesian Community Journal International journal of education and learning Buletin Sistem Informasi dan Teknologi Islam Jurnal Sistem Informasi dan Bisnis Cerdas Applied Engineering and Technology Bulletin of Culinary Art and Hospitality Jurnal Inovasi Teknologi dan Edukasi Teknik Bulletin of Social Informatics Theory and Application Journal of Information Technology and Cyber Security KOPEMAS Jurnal Infinity Advance Sustainable Science, Engineering and Technology (ASSET) Signal and Image Processing Letters
Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Mobile and Forensics

Prediksi Lama Studi Mahasiswa Menggunakan Naïve Bayes Berdasarkan Aspek Sosial Ekonomi Mahasiwa Putri, Desy Pratiwi Ika; Anggreani, Desi; Wibawa, Aji Prasetya
Mobile and Forensics Vol 2, No 1 (2020)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/mf.v2i1.2137

Abstract

Perguruan tinggi merupakan satuan penyelenggara pendidikan tinggi sebagai tingkat lanjut jenjang pendidikan menengah di jalur pendidikan formal. Kualitas perguruan tinggi, khususnya perguruan tinggi di Indonesia diukur berdasarkan 9 standar utama. Salah satu aspek yang berpengaruh ialah mahasiswa dan lulusan. Ketepatan waktu studi mahasiswa adalah hal yang penting dalam perguruan tinggi. Ketepatan waktu mahasiswa dalam menyelesaikan studi menjadi salah satu penunjang penilaian kualitas perguruan tinggi. Metode Naïve Bayes dapat digunakan untuk memprediksi ketepatan lama studi. Klasifikasi Naïve Bayes dalam penelitian ini menggunakan beberapa variabel yang sangat erat kaitannya dalam menyelesaikan studi khususnya pada aspek sosial ekonomi mahasiswa. Adapun variable dari sisi sosial dan ekonomi tersebut diantaranya jenis kelamin, nilai IPK, tempat lahir, tipe sekolah, jumlah keikutsertaan organisasi, tingkat ekonomi, dan dukungan orang tua. Pada penelitian ini, metode Naïve Bayes diimplementasikan pada kasus prediksi lama studi mahasiswa menggunakan 200 data set. Hasil penelitian menunjukkan tingkat rata-rata akurasi sebesar 80,5% dengan menggunakan K-Fold Cross Validation diperoleh standar deviasi 3,02%.   Higher education is a higher education provider unit as an advanced level of secondary education in the formal education pathway. The quality of tertiary institutions, especially tertiary institutions in Indonesia, is measured according to 9 main standards. One influential aspect is students and graduates. Timeliness of student studies is important in higher education. Timeliness of students in completing their studies is one of the supports for assessing the quality of higher education. The Naïve Bayes method can be used to predict the accuracy of the study duration. Naïve Bayes classification in this study uses several variables that are very closely related in completing studies, especially on the social economic aspects of students. The social and economic variables include gender, GPA, birthplace, type of school, number of organizational participations, economic level, and parent support. In this study, the Naïve Bayes method is implemented in the case of prediction of student study duration using 200 data sets. The results showed an average level of accuracy of 80.5% using K-Fold Cross Validation obtained a standard deviation of 3.02%.
Pelabelan Kelas Kata Bahasa Jawa Menggunakan Hidden Markov Model Mursyit, Mohammad; Wibawa, Aji Prasetya; Zaeni, Ilham Ari Elbaith; Rosyid, Harits Ar
Mobile and Forensics Vol 2, No 2 (2020)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/mf.v2i2.2450

Abstract

Part of Speech Tagging atau POS Tagging adalah proses memberikan label pada setiap kata dalam sebuah kalimat secara otomatis. Penelitian ini menggunakan algoritma Hidden Markov Model (HMM) untuk proses POS Tagging. Perlakuan untuk unknown words menggunakan Most Probable POS-Tag. Dataset yang digunakan berupa 10 cerita pendek berbahasa Jawa terdiri dari 10.180 kata yang telah diberikan tagsetBahasa Jawa. Pada penelitian ini proses POS Tagging menggunakan dua skenario. Skenario pertama yaitu menggunakan algoritma Hidden Markov Model (HMM) tanpa menggunakan perlakuan untuk unknown words. Skenario yang kedua menggunakan HMM dan Most Probable POS-Tag untuk perlakuan unknown words. Hasil menunjukan skenario pertama menghasilkan akurasi sebesar 45.5% dan skenario kedua menghasilkan akurasi sebesar 70.78%. Most Probable POS-Tag dapat meningkatkan akurasi pada POS Tagging tetapi tidak selalu menunjukan hasil yang benar dalam pemberian label. Most Probable POS-Tag dapat menghilangkan probabilitas bernilai Nol dari POS Tagging Hidden Markov Model. Hasil penelitian ini menunjukan bahwa POS Tagging dengan menggunakan Hidden Markov Model dipengaruhi oleh perlakuan terhadap unknown words, perbendaharaan kata dan hubungan label kata pada dataset.  Part of Speech Tagging or POS Tagging is the process of automatically giving labels to each word in a sentence. This study uses the Hidden Markov Model (HMM) algorithm for the POS Tagging process. Treatment for unknown words uses the Most Probable POS-Tag. The dataset used is in the form of 10 short stories in Javanese consisting of 10,180 words which have been given the Javanese tagset. In this study, the POS Tagging process uses two scenarios. The first scenario is using the Hidden Markov Model (HMM) algorithm without using treatment for unknown words. The second scenario uses HMM and Most Probable POS-Tag for treatment of unknown words. The results show that the first scenario produces an accuracy of 45.5% and the second scenario produces an accuracy of 70.78%. Most Probable POS-Tag can improve accuracy in POS Tagging but does not always produce correct labels. Most Probable POS-Tag can remove zero-value probability from POS Tagging Hidden Markov Model. The results of this study indicate that POS Tagging using the Hidden Markov Model is influenced by the treatment of unknown words, vocabulary and word label relationships in the dataset.
Single Exponential Smoothing-Multilayer Perceptron Untuk Peramalan Pengunjung Unik Jurnal Elektronik Ferdinand, Miftakhul Anggita Bima; Wibawa, Aji Prasetya; Zaeni, Ilham Ari Elbaith; Rosyid, Harits Ar
Mobile and Forensics Vol 2, No 2 (2020)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/mf.v2i2.2034

Abstract

Jumlah kunjungan rerata pengunjung unik per hari pada jurnal elektronik menunjukkan bahwa hasil terbitan karya ilmiah website tersebut menarik. Sehingga jumlah pengunjung unik dijadikan indikator penting dalam mengukur keberhasilan sebuah jurnal elektronik untuk memenuhi perluasan, penyebaran dan percepatan sistem akreditasi jurnal. Pengunjung Unik merupakan jumlah pengunjung per Internet Address (IP) yang mengakses sebuah jurnal elektronik dalam kurun waktu tertentu. Terdapat beberapa metode yang biasa digunakan untuk peramalan, diantaranya adalah Multilayer Perceptron (MLP).  Kualitas data berpengaruh besar dalam membangun model MLP yang baik, karena sukses tidaknya permodelan pada MLP sangat dipengaruhi oleh data input. Salah satu cara untuk meningkatkan kualitas data adalah dengan melakukan smoothing pada data tersebut. Pada penelitian ini digunkan metode peramalan Multilayer Perceptron berdasarkan penelitian sebelumnya dengan kombinasi data training dan testing 80%-20% dengan asitektur 2-1-1 dan learning rate 0,4. Selanjutnya untuk meningkatkan kualitas data dilakukan smoothing dengan menerapkan metode Single Exponential Smoothing. Dari penelitian yang dilakukan diperoleh hasil terbaik menggunakan alpha 0.9 dengan hasil akurasi MSE 94.02% dan RMSE 75.54% dengan lama waktu eksekusi 580,27 detik. The number of visits by the average unique visitor per day on electronic journals shows that the published scientific papers on the website are interesting. So that the number of unique visitors is used as an important indicator in measuring the success of an electronic journal to meet the expansion, dissemination and acceleration of the journal accreditation system. Unique Visitors is the number of visitors per Internet Address (IP) who access an electronic journal within a certain period of time. There are several methods commonly used for forecasting, including the Multilayer Perceptron (MLP). Data quality has a big influence in building a good MLP model, because the success or failure of modeling in MLP is greatly influenced by the input data. One way to improve data quality is by smoothing the data. In this study, the Multilayer Perceptron forecasting method was used based on previous research with a combination of training data and testing 80% -20% with a 2-1-1 architecture and a learning rate of 0.4. Furthermore, to improve data quality, smoothing is done by applying the Single Exponential Smoothing method. From the research conducted, the best results were obtained using alpha 0.9 with MSE accuracy of 94.02% and RMSE 75.54% with a long execution time of 580.27 seconds.
Single Exponential Smoothing-Multilayer Perceptron Untuk Peramalan Pengunjung Unik Jurnal Elektronik Ferdinand, Miftakhul Anggita Bima; Wibawa, Aji Prasetya; Zaeni, Ilham Ari Elbaith; Rosyid, Harits Ar
Mobile and Forensics Vol. 2 No. 2 (2020)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/mf.v2i2.2034

Abstract

Jumlah kunjungan rerata pengunjung unik per hari pada jurnal elektronik menunjukkan bahwa hasil terbitan karya ilmiah website tersebut menarik. Sehingga jumlah pengunjung unik dijadikan indikator penting dalam mengukur keberhasilan sebuah jurnal elektronik untuk memenuhi perluasan, penyebaran dan percepatan sistem akreditasi jurnal. Pengunjung Unik merupakan jumlah pengunjung per Internet Address (IP) yang mengakses sebuah jurnal elektronik dalam kurun waktu tertentu. Terdapat beberapa metode yang biasa digunakan untuk peramalan, diantaranya adalah Multilayer Perceptron (MLP). Kualitas data berpengaruh besar dalam membangun model MLP yang baik, karena sukses tidaknya permodelan pada MLP sangat dipengaruhi oleh data input. Salah satu cara untuk meningkatkan kualitas data adalah dengan melakukan smoothing pada data tersebut. Pada penelitian ini digunkan metode peramalan Multilayer Perceptron berdasarkan penelitian sebelumnya dengan kombinasi data training dan testing 80%-20% dengan asitektur 2-1-1 dan learning rate 0,4. Selanjutnya untuk meningkatkan kualitas data dilakukan smoothing dengan menerapkan metode Single Exponential Smoothing. Dari penelitian yang dilakukan diperoleh hasil terbaik menggunakan alpha 0.9 dengan hasil akurasi MSE 94.02% dan RMSE 75.54% dengan lama waktu eksekusi 580,27 detik. The number of visits by the average unique visitor per day on electronic journals shows that the published scientific papers on the website are interesting. So that the number of unique visitors is used as an important indicator in measuring the success of an electronic journal to meet the expansion, dissemination and acceleration of the journal accreditation system. Unique Visitors is the number of visitors per Internet Address (IP) who access an electronic journal within a certain period of time. There are several methods commonly used for forecasting, including the Multilayer Perceptron (MLP). Data quality has a big influence in building a good MLP model, because the success or failure of modeling in MLP is greatly influenced by the input data. One way to improve data quality is by smoothing the data. In this study, the Multilayer Perceptron forecasting method was used based on previous research with a combination of training data and testing 80% -20% with a 2-1-1 architecture and a learning rate of 0.4. Furthermore, to improve data quality, smoothing is done by applying the Single Exponential Smoothing method. From the research conducted, the best results were obtained using alpha 0.9 with MSE accuracy of 94.02% and RMSE 75.54% with a long execution time of 580.27 seconds.
Prediksi Lama Studi Mahasiswa Menggunakan Naïve Bayes Berdasarkan Aspek Sosial Ekonomi Mahasiwa Putri, Desy Pratiwi Ika; Anggreani, Desi; Wibawa, Aji Prasetya
Mobile and Forensics Vol. 2 No. 1 (2020)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/mf.v2i1.2137

Abstract

Perguruan tinggi merupakan satuan penyelenggara pendidikan tinggi sebagai tingkat lanjut jenjang pendidikan menengah di jalur pendidikan formal. Kualitas perguruan tinggi, khususnya perguruan tinggi di Indonesia diukur berdasarkan 9 standar utama. Salah satu aspek yang berpengaruh ialah mahasiswa dan lulusan. Ketepatan waktu studi mahasiswa adalah hal yang penting dalam perguruan tinggi. Ketepatan waktu mahasiswa dalam menyelesaikan studi menjadi salah satu penunjang penilaian kualitas perguruan tinggi. Metode Naïve Bayes dapat digunakan untuk memprediksi ketepatan lama studi. Klasifikasi Naïve Bayes dalam penelitian ini menggunakan beberapa variabel yang sangat erat kaitannya dalam menyelesaikan studi khususnya pada aspek sosial ekonomi mahasiswa. Adapun variable dari sisi sosial dan ekonomi tersebut diantaranya jenis kelamin, nilai IPK, tempat lahir, tipe sekolah, jumlah keikutsertaan organisasi, tingkat ekonomi, dan dukungan orang tua. Pada penelitian ini, metode Naïve Bayes diimplementasikan pada kasus prediksi lama studi mahasiswa menggunakan 200 data set. Hasil penelitian menunjukkan tingkat rata-rata akurasi sebesar 80,5% dengan menggunakan K-Fold Cross Validation diperoleh standar deviasi 3,02%.  Higher education is a higher education provider unit as an advanced level of secondary education in the formal education pathway. The quality of tertiary institutions, especially tertiary institutions in Indonesia, is measured according to 9 main standards. One influential aspect is students and graduates. Timeliness of student studies is important in higher education. Timeliness of students in completing their studies is one of the supports for assessing the quality of higher education. The Naïve Bayes method can be used to predict the accuracy of the study duration. Naïve Bayes classification in this study uses several variables that are very closely related in completing studies, especially on the social economic aspects of students. The social and economic variables include gender, GPA, birthplace, type of school, number of organizational participations, economic level, and parent support. In this study, the Naïve Bayes method is implemented in the case of prediction of student study duration using 200 data sets. The results showed an average level of accuracy of 80.5% using K-Fold Cross Validation obtained a standard deviation of 3.02%.
Pelabelan Kelas Kata Bahasa Jawa Menggunakan Hidden Markov Model Mursyit, Mohammad; Wibawa, Aji Prasetya; Zaeni, Ilham Ari Elbaith; Rosyid, Harits Ar
Mobile and Forensics Vol. 2 No. 2 (2020)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/mf.v2i2.2450

Abstract

Part of Speech Tagging atau POS Tagging adalah proses memberikan label pada setiap kata dalam sebuah kalimat secara otomatis. Penelitian ini menggunakan algoritma Hidden Markov Model (HMM) untuk proses POS Tagging. Perlakuan untuk unknown words menggunakan Most Probable POS-Tag. Dataset yang digunakan berupa 10 cerita pendek berbahasa Jawa terdiri dari 10.180 kata yang telah diberikan tagset Bahasa Jawa. Pada penelitian ini proses POS Tagging menggunakan dua skenario. Skenario pertama yaitu menggunakan algoritma Hidden Markov Model (HMM) tanpa menggunakan perlakuan untuk unknown words. Skenario yang kedua menggunakan HMM dan Most Probable POS-Tag untuk perlakuan unknown words. Hasil menunjukan skenario pertama menghasilkan akurasi sebesar 45.5% dan skenario kedua menghasilkan akurasi sebesar 70.78%. Most Probable POS-Tag dapat meningkatkan akurasi pada POS Tagging tetapi tidak selalu menunjukan hasil yang benar dalam pemberian label. Most Probable POS-Tag dapat menghilangkan probabilitas bernilai Nol dari POS Tagging Hidden Markov Model. Hasil penelitian ini menunjukan bahwa POS Tagging dengan menggunakan Hidden Markov Model dipengaruhi oleh perlakuan terhadap unknown words, perbendaharaan kata dan hubungan label kata pada dataset. Part of Speech Tagging or POS Tagging is the process of automatically giving labels to each word in a sentence. This study uses the Hidden Markov Model (HMM) algorithm for the POS Tagging process. Treatment for unknown words uses the Most Probable POS-Tag. The dataset used is in the form of 10 short stories in Javanese consisting of 10,180 words which have been given the Javanese tagset. In this study, the POS Tagging process uses two scenarios. The first scenario is using the Hidden Markov Model (HMM) algorithm without using treatment for unknown words. The second scenario uses HMM and Most Probable POS-Tag for treatment of unknown words. The results show that the first scenario produces an accuracy of 45.5% and the second scenario produces an accuracy of 70.78%. Most Probable POS-Tag can improve accuracy in POS Tagging but does not always produce correct labels. Most Probable POS-Tag can remove zero-value probability from POS Tagging Hidden Markov Model. The results of this study indicate that POS Tagging using the Hidden Markov Model is influenced by the treatment of unknown words, vocabulary and word label relationships in the dataset.
Co-Authors A.N. Afandi Abd. Rasyid Syamsuri Abdur Rohman Achmad Fanany Onnilita Gaffar Adaby, Resnu Wahyu Ade Kurnia Ganesh Akbari Aditya Wahyu Setiawan Adjie Rosyidin Adnan, Adam Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agus Purnomo Ahmad Munjin Nasih Ahmad Naim Che Pee Ahmad Taufiq Aindra, Alifah Diantebes Aji, Bayu Kuncoro Akbari, Ade Kurnia Ganesh Akhimullah Akmal Fattah Akhmad Fanny Fadhilla Akrom Tegar Khomeiny Alfiansyah Putra Pertama Triono Ali, Martina Alifah Diantebes Aindra Amro, Manar Y Anak Agung Istri Sri Wiadnyani Andien Khansa’a Iffat Paramarta Andika Dwiyanto, Felix Andini, Nurul Fajriah Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andri Pranolo Andriansyah, Muhammad Rizal Angeline, Grace Anggreani, Desi Anik Nur Handayani Anton Prafanto Anusua Ghosh Anusua Ghosh, Anusua Arbian Sulistyo, Danang Ardiansyah, Mohammad Iqbal Firman Aripriharta - Arya Tandy Hermawan Ashar, Muhammad Astuti, Wistiani Atmaja, I Made Ari Dwi Suta Atmaja, Nimas Hadi Ba, Abdoul Fatakhou Bagaskoro, Muhammad Cahyo Bahalwan, Lugas Anegah Baitun Nadhiroh Bambang Widi Pratolo Bella Putra Utama, Agung Betty Masruroh Bety Masruroh Bin Abdul Hadi, Abdul Razak Bin Haji Jait, Adam Cahyo Prayogo, Cahyo Cengiz, Korhan Cholisah Erman Hasihi Chong , Wan Ni Chuttur, Mohammad Yasser Citra Suardi Citra, Hana Rachma Collante, Leonel Hernandez Daniar Wahyu Darwis, Herdianti Dedi Kuswandi Dedy Kuswandi Denis Eka Cahyani Denna Delawanti Chrisyarani, Denna Delawanti Desi Anggreani Devita, Riri Nada Dewandra, Aderyan Reynaldi Fahrezza Dewi, Popy Maulida Dhani Wahyu Wijaya Dhani Wahyu Wijaya Dhaniyar Dhaniyar Didik Dwi Prasetya Didik Nurhadi Didik Suprayogo Dika Fikri L Dityo Kreshna Argeshwara Dityo Kreshna Argeshwara Drezewski, Rafał Dwi Jaelani, Mardian dwi yasa, arnelia Dwieb, Mohamed Dwiyanto, Felix Andika Dwiyanto, Felix Andika Dyah Lestari Edinar Valiant Hawali Eka Nurcahya Ningsih Elta Sonalitha Endah Setyo Wardani Erna Daniati Esther Irawati Setiawan Fachrul Kurniawan Fachrul Kurniawan Fadhilah, Farhan Fadhilla, Akhmad Fanny Fadhli Almu’iini Ahda Faidzin, Ilham Fajar Purnama Fajarwati, Erliana Faller, Erwin Faradini Usha Setyaputri Farid Miftahuddin Farida Nur Kumala Fauzan Cahya Arifin Felix Andika Dwiyanto Felix Andika Dwiyanto Felix Andika Dwiyanto Felix Andika Dwiyanto Ferdinand, Miftakhul Anggita Bima Ferina Ayu Pusparani Filby , Brilliant Filby, Brilliant Fitria, Nimas Dian Fitriana Kurniawati Gianika Roman Sosa Graciello, Manuel Tanbica Gülsün Kurubacak Gunawan Gunawan Gwinny Tirza Rarastri Hammad, Jehad A. H. Hammad, Jehad A.H Hari Putranto Haris Anwar Syafrudie Harits Ar Rasyid Harits Ar Rosyid Hariyono Hariyono Hariyono Hariyono Hariyono Hariyono Hartono, Nickolas Hary Suswanto Hasanuddin, Tasrif Hashim, Ummi Raba’ah Haviluddin Haviluddin Haviluddin, - Hendrawan, William Hartanto Herdianti Darwis Heri Pratikto Herman Herman Herman Thuan To Saurik Heru Nurwarsito Heru Wahyu Herwanto Hery Widijanto Hidayah Kariima Fithri Hidayah, Laily Hidayatul Ma'rifah Hitipeuw, Emanuel Hong, Yeap Chi I Made Wirawan I Nyoman Gede Arya Astawa Idris Idris Ilham Mulya Putra Pradana Imansyah, Pranadya Bagus Imro’aturrozaniyah, Imro’aturrozaniyah Inggar Tri Agustin Mawarni Irsyada, Rahmat Islami, Pio Arfianova Fitrizky Islami, Pio Arfianova Fitrizky Islami, Pio Arfianova Fitrizky Ismail, Amelia Ritahani Istiqlal, Adib Izdihar, Zahra Nabila Jehad A. H. Hammad Jehad A.H. Hammad Jevri Tri Ardiansah Junoh, Ahmad Kadri Juwita Annisa Fauzi Juwita Annisa Fauzi Kaki, Gregorius Paulus Mario Laka Kasturi Kanchymalay, Kasturi Kelvin Wong Khafit Badrus Zaman Khen Dedes Khoiruddin Asfanie Khurin Nabila Kirya Mateeke Moses Kohei Arai Kurniawan, Fachrul Kurniawan, Novian Candra Kurniawati, Fitriana Kuswandi, Dedy Laily Hidayah Langlang Gumilar Lauretta, Giovanny Cyntia Lazuardi Noorca Rachmadi Leonel Hernandez Leonel Hernandez Leonel Hernandez Leonel Hernandez, Leonel Lestari, Muqodimah Nur Lestari, Muqodimah Nur Lestari, Muqodimah Nur Liang, Yoeh Wen Lisa Ramadhani Harianti Lisa Ramadhani Harianti Ludovikus Boman Wadu Luther Latumakulita M. Alfian Mizar M. Zainal Arifin Mansoor Abdul Hamid Mantony, Oslida Mao, Yingchi Marchena, Piedad Marida, Tyas Agung Cahyaning Marji Marji Markus Diantoro Masruroh, Bety Mazarina Devi Meiga Ayu Ariyanti Mhd. Irvan, Mhd. Irvan Mifta Dewayani Miftahul Qiki Winata Ming F. Teng Ming Foey Teng Ming Foey Teng, Ming Foey Mochamad Hariadi Moh. Zainul Falah Mohamad Rodhi Faiz Mokh Sholihul Hadi Moses, Kirya Mateeke Moses, Kirya Mateeke Moses, Kirya Mateeke Mudakir, Mudakir Muh. Aliyazid Mude Muhamad Arifin Muhammad Busthomi Arviansyah Muhammad Ferdyan Syach Muhammad Firman Aji Saputra Muhammad Iqbal Akbar Muhammad Jauharul Fuadi Muhammad Nu’man Hakim Muhammad, Abdullahi Uwaisu Muladi Munir Munir Muntholib Muqodimah Nur Lestari Mursyit, Mohammad Nabila Izdihar, Zahra Nabila, Khurin Nada, Anita Qotrun Nadhiroh, Baitun Nadia Roosmalita Sari Nadia Roosmalita Sari Nafalski, Andrew Nastiti Susetyo Fanany Putri Naufal, Ayyub Naziro Nedic, Zorica Nida Jabari Ningsih, Eka Nurcahya Ningtyas, Yana Noorul Islam Novia Ratnasari Noviani, Erina Fika Nugraha, Agil Zaidan Nur Cahyo Wibowo Nur Hidayatullah Nurfadila, Piska Dwi Nurhalifah, Siti Nurroby Wahyu Saputra Nurul Falah Hashim Nurul Hidayat Oakley, Simon Okazaki Yasuhisa Oki Dwi Yuliana Omar, Saodah Osamu Fukuda Pakpahan, Herman Santoso Paramarta, Andien Khansa’a Iffat Paul Igunda Machumu Pio Arfianova Fitrizky Islami Praherdhiono, Hendy Prananda Anugrah Prasojo, Fadillah Pratama, Awanda Setya Sanfajar Puji Santoso Puji Santoso Puji Santoso Punaji Setyosari Pundhi Yuliawati Pundhi Yuliawati Purnawansyah Purnawansyah Purnomo Purnomo Purnomo Purnomo Purwatiningsih, Ayu Putra Utama, Agung Bella Putra, Agung Bella Utama Putri Syarifa, Dhea Fanny Putri, Desy Pratiwi Ika Putri, Fadia Irsania Putri, Nastiti Susetyo Fanany Qonita, Adiba Rahiddin, Rahillda Nadhirah Norizzaty Rahmadhani, Nur Aini Syafrina Raja, Roesman Ridwan Ratnasari, Novia Rendy Yani Susanto Resty Wulanningrum Ridho, Faiz Mohammad Ridwan Shalahuddin Ridwan Shalahuddin Riri Nada Devita Rizal Kholif Nurrohman Rizqini, Fajriwati Qoyyum Roni Herdianto Rosmin, Norzanah Rr. Poppy Puspitasari, Rr. Poppy Rully Charitas Indra Prahmana Ruth Ema Febrita Saifullah, Shoffan Salahuddin, Lizawati Salsabila, Reni Fatrisna Santoso, Priyo Aji Saputra, Irzan Tri Sari, Nadia Roosmalita Sarni Suhaila Rahim Seno Isbiyantoro Setiawan, Ariyono Setyadi, Hario Jati Setyaputri, Faradini Usha Setyawan P. Sakti Shahrul, Azzhan Shalahuddin, Ridwan Shiddiqy, Jabar Ash Shidiqi, Maulana Ahmad As Shili, Hechmi Sias, Quota Alief Simbolon, Triyanti Sisca Rahmadonna Siti Helmyati Siti Sendari Soenar Soekopitojo Soraya Norma Mustika Sri Rahmawati Stamen Gadzhanov Subadra, ST. Ulfawanti Intan Sucahyo, Cornaldo Beliarding Sugiarto Cokrowibowo Sugiyanto - Suhiro Wongso Susilo Sujito Sujito Sulistyo, Danang Arbian Sunu Jatmika, Sunu Supeno Mardi Susiki Nugroho, Supeno Mardi Supriadi Supriadi Supriyono Supriyono Suryani, Ani Wilujeng Susilo, Suhiro Wongso Suyono Suyono Suyono Suyono Syaad Patmantara Syaad Patmanthara Syabani, Muhiban Tantri Hari Mukti Tasrif Hasanuddin Trahutomo, Dinnuhoni Tri Kuncoro Tri Lathif Mardi Suryanto Tri Lathif Mardi Suryanto Tri Saputra, Irzan Tri Sutanti Tri Sutanti, Tri Triono, Alfiansyah Putra Pertama Triyanna Widiyaningtyas Triyanna Widyaningtyas Triyanna Widyaningtyas, Triyanna Tsukasa Hirashima Tuatul Mahfud Ummi Rabaah Hasyim Uriu, Wako Utama , Agung Bella Putra Utama, Agung Bella Putra Utomo Pujianto Vira Setia Ningrum Vira Setia Ningrum Vitrail Gloria Mairi Voliansky, Roman Wadu, Ludovikus Boman Wahyu Arbianda Yudha Pratama Wahyu Sakti Gunawan Irianto Wahyu Tri Handoko Wako Uriu Wardani, Endah Setyo Wayan Firdaus Mahmudy Wibowo, Danang Arengga Wibowo, Fauzy Satrio Wibowo, Nur Cahyo Widiharso, Prasetya Widiyanintyas, Triyanna Yandratama, Hengky Yasa, Arnelia Dwi Yingchi Mao Yongen Susman Yosi Kristian Yuliana, Oki Dwi Yuliawati, Pundhi Yuni Rahmawati Yusmanto, Yunan Zaeni, Ilham Ari Elbaith Zhou, Xiaofeng Zulkham Umar Rosyidin Zulkham Umar Rosyidin