p-Index From 2021 - 2026
15.446
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering International Journal of Power Electronics and Drive Systems (IJPEDS) IAES International Journal of Artificial Intelligence (IJ-AI) TEKNIK INFORMATIKA Jurnal Ilmu Pendidikan Tekno : Jurnal Teknologi Elektro dan Kejuruan ELKHA : Jurnal Teknik Elektro Mechatronics, Electrical Power, and Vehicular Technology Jurnal Pendidikan Sains MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Jurnal Informatika Jurnal Infinity Harmonia: Journal of Research and Education Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics Jurnal Sistem Informasi dan Bisnis Cerdas Register: Jurnal Ilmiah Teknologi Sistem Informasi Proceeding of the Electrical Engineering Computer Science and Informatics Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan JOIN (Jurnal Online Informatika) JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Knowledge Engineering and Data Science Jurnal Ilmiah Flash JURNAL MEDIA INFORMATIKA BUDIDARMA Ranah: Jurnal Kajian Bahasa Jurnal Sains dan Informatika Jurnal Inovasi Bisnis (Inovbiz) ILKOM Jurnal Ilmiah at-tamkin: Jurnal Pengabdian kepada Masyarakat SENTIA 2016 SENTIA 2015 Jurnal Teknologi Sistem Informasi dan Aplikasi Journal of Educational Research and Evaluation International Journal of Elementary Education Jurnal Ilmiah Sekolah Dasar Gelar : Jurnal Seni Budaya Prosiding SAKTI (Seminar Ilmu Komputer dan Teknologi Informasi) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Performance PEDULI: Jurnal Imiah Pengabdian Pada Masyarakat Antivirus : Jurnal Ilmiah Teknik Informatika Kumawula: Jurnal Pengabdian Kepada Masyarakat Buletin Ilmiah Sarjana Teknik Elektro Mobile and Forensics International Journal of Visual and Performing Arts Journal of Robotics and Control (JRC) Jurnal Mnemonic Sains, Aplikasi, Komputasi dan Teknologi Informasi Jurnal Teknik Elektro Uniba (JTE Uniba) Frontier Energy System and Power Engineering Belantika Pendidikan Indonesian Journal of Data and Science Letters in Information Technology Education (LITE) Journal of Applied Data Sciences Science in Information Technology Letters International Journal of Engineering, Science and Information Technology International Journal of Robotics and Control Systems Abditeknika - Jurnal Pengabdian Kepada Masyarakat Anjoro : International Journal of Agriculture and Business Journal of Dinda : Data Science, Information Technology, and Data Analytics Indonesian Community Journal International journal of education and learning Buletin Sistem Informasi dan Teknologi Islam Jurnal Sistem Informasi dan Bisnis Cerdas Applied Engineering and Technology Bulletin of Culinary Art and Hospitality Jurnal Inovasi Teknologi dan Edukasi Teknik Bulletin of Social Informatics Theory and Application Journal of Information Technology and Cyber Security KOPEMAS Jurnal Infinity Advance Sustainable Science, Engineering and Technology (ASSET) Signal and Image Processing Letters
Claim Missing Document
Check
Articles

Minangkabau Language Stemming: A New Approach with Modified Enhanced Confix Stripping Ahda, Fadhli Almu'iini; Aji Prasetya Wibawa; Didik Dwi Prasetya; Danang Arbian Sulistyo; Andrew Nafalski
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6511

Abstract

Stemming is an essential procedure in natural language processing (NLP), which involves reducing words to their root forms by eliminating affixes, including prefixes, infixes, and suffixes. The employed method assesses the efficacy of stemming, which differs according to language. Complex affixation patterns in Indonesian and regional languages such as Minangkabau pose considerable difficulties for traditional algorithms. This research adopts the enhanced fixed-stripping method to tackle these issues by integrating linguistic characteristics unique to Minangkabau. This study has three phases: data acquisition, pseudocode development, and algorithm execution. Testing revealed an average accuracy of 77.8%, indicating the algorithm's proficiency in managing Minangkabau’s intricate morphology. Nevertheless, constraints persist, particularly with irregular affixation patterns. Possible improvements could include adding more datasets, improving the rules for handling affixes, and using machine learning to make the system more flexible and accurate. This study emphasizes the significance of customized solutions for regional languages and provides insights into the advancement of NLP in various linguistic environments. The findings underscore the progress made in processing Minangkabau text while also emphasizing the need for further research to address current issues.
MPPT Performance Analysis for PV Energy Harvesting Using Grey Wolf Optimization (GWO) Algorithm Aripriharta, Aripriharta; Syabani, Muhiban; Sendari, Siti; Wibawa, Aji Prasetya; Susilo, Suhiro Wongso; Bagaskoro, Muhammad Cahyo; Rosmin, Norzanah
ELKHA : Jurnal Teknik Elektro Vol. 17 No.1 April 2025
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v17i1.91643

Abstract

Renewable energy is a key solution to meeting the growing demand for electricity while reducing reliance on non-renewable sources. Among various renewable technologies, photovoltaic (PV) systems are widely used in solar power plants (PLTS) to harness solar energy. However, PV efficiency is affected by environmental factors such as fluctuating solar irradiance and temperature, which cause instability in output voltage and power. To address these issues, Maximum Power Point Tracking (MPPT) techniques are applied to optimize power extraction. This study proposes the Grey Wolf Optimization (GWO) algorithm for MPPT and evaluates its performance through MATLAB/SIMULINK simulations under varying irradiance and temperature conditions. Inspired by the hunting behavior and social hierarchy of grey wolves, GWO dynamically adjusts the converter's duty cycle based on real-time voltage and current measurements to maximize output power. The study focuses on PV systems in Malang, Indonesia, and compares GWO with the Particle Swarm Optimization (PSO) method in terms of accuracy and stability. The results indicate that increased solar irradiance substantially enhances PV power output, while rising temperatures tend to reduce efficiency. The GWO algorithm achieves an average tracking accuracy of 94.5632%, slightly lower than the 96.9851% achieved by PSO. However, GWO demonstrates superior performance in terms of stability, with faster convergence and reduced oscillations during the tracking process. A comparison of system performance before and after applying the GWO method shows notable improvements in tracking consistency and power extraction efficiency, especially under dynamic environmental changes. The novelty of this study lies in its use of real-world environmental data collected over a 30-day period in a tropical setting, which is rarely addressed in previous GWO-based MPPT research. These findings highlight the potential of the GWO-based MPPT strategy to enhance PV system reliability and efficiency in real-time renewable energy applications.
A review of recent deep learning applications in wood surface defect identification Ali, Martina; Hashim, Ummi Raba’ah; Kanchymalay, Kasturi; Wibawa, Aji Prasetya; Salahuddin, Lizawati; Rahiddin, Rahillda Nadhirah Norizzaty
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i3.pp1696-1707

Abstract

Wood is widely used in construction, art, and home applications due to its aesthetic appeal and favorable mechanical properties. However, environmental factors significantly affect the growth and preservation of wood, often leading to defects that can reduce its performance and ornamental value. Researchers have introduced machine vision and deep learning methods to address the challenges of high labor costs and inefficiencies in identifying wood defects. Deep learning has shown great success in image recognition tasks, yielding impressive results. This paper reviews previous work on deep-learning strategies for identifying wood surface defects. It also discusses data augmentation techniques to address limited defect data and explores transfer learning to enhance classification accuracy on small datasets. Finally, the paper examines the potential limitations of deep learning for defect identification and suggests future research directions.
Building a Narrative Event Dataset from Andersen’s Fairy Tales for Literary and Computational Analysis Daniati, Erna; Wibawa, Aji Prasetya; Irianto, Wahyu Sakti Gunawan
International Journal of Engineering, Science and Information Technology Vol 5, No 3 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i3.910

Abstract

This paper describes building a narrative event dataset for the entire set of 153 fairy tales written by Hans Christian Andersen as?a resource for literary analysis and computational research. The corpus is?built up through semi-automatic annotation for important narrative events: character actions, period transitions, causal communications, and story themes. Each event is augmented with? metadata such as event type, event participants, event temporality (order) and event thematic relevance. This computer-readable structured data is helpful for NLP applications like event detection and temporal reasoning. Still, it supports in-depth literary?studies of plot structures, moral themes and character archetypes in Andersen's stories. Linking the digital humanities with the domain of computational linguistics, the dataset can be jointly used in inter-disciplinary research, and has the potential to reveal new aspects of classical narrative forms and how these findings?and developments can be usefully integrated in AI-supported storytelling systems.
Kuntilanak as a Runtime Entity: Technical Integration of Javanese Folklore Using Manga Matrix in a 2D Horror Game Saurik, Herman Thuan To; Rosyid, Harits Ar; Wibawa, Aji Prasetya; Setiawan, Esther Irawati
International Journal of Engineering, Science and Information Technology Vol 5, No 3 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i3.961

Abstract

In this work, Kuntilanak, a mythological creature from Javanese mythology, is used as a dynamic element in a 2D horror game to provide a technical framework for integrating culturally infused folklore into interactive gaming. The design process breaks down the character's appearance, attire, and personality into workable technical specifications using the Manga Matrix framework as a guide. With C# scripted behaviours like unexpected appearances, animation state changes (controlled by Unity's Animator Controller), audio triggers (laughing, crying), and interactive reactions to in-game objects like yellow Bamboo (for hiding) and scissors (for repelling), Kuntilanak was created as a sprite-based runtime entity inside the Unity game engine. The character can be dynamically instantiated thanks to this technical approach, which supports procedural horror encounters and is consistent with traditional narratives. The effectiveness of the suggested technological integration was validated by a quantitative assessment using a Likert scale (N=50), which showed 82.2% agreement on cultural authenticity and 79.5% on emotional impact. The findings support the methodology's capacity to turn folklore characters into functional game entities and offer a replicable model for serious games that consider cultural sensitivity. The findings support the methodology's capacity to turn folklore characters into functional game entities and provide a replicable model for serious games that consider cultural sensitivity, with direct implications for designing engaging educational experiences that promote cultural heritage preservation.
Enhancing Teks Summarization of Humorous Texts with Attention-Augmented LSTM and Discourse-Aware Decoding Supriyono, Supriyono; Wibawa, Aji Prasetya; Suyono, Suyono; Kurniawan, Fachrul
International Journal of Engineering, Science and Information Technology Vol 5, No 3 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i3.932

Abstract

Abstractive summarization of humorous narratives presents unique computational challenges due to humor's multimodal, context-dependent nature. Conventional models often fail to preserve the rhetorical structure essential to comedic discourse, particularly the relationship between setup and punchline. This study proposes a novel Attention-Augmented Long Short-Term Memory (LSTM) model with discourse-aware decoding to enhance the summarization of stand-up comedy performances. The model is trained to capture temporal alignment between narrative elements and audience reactions by leveraging a richly annotated dataset of over 10,000 timestamped transcripts, each marked with audience laughter cues. The architecture integrates bidirectional encoding, attention mechanisms, and a cohesion-first decoding strategy to retain humor's structural and affective dynamics. Experimental evaluations demonstrate the proposed model outperforms baseline LSTM and transformer configurations in ROUGE scores and qualitative punchline preservation. Attention heatmaps and confusion matrices reveal the model's capability to prioritize humor-relevant content and align it with audience responses. Furthermore, analyses of laughter distribution, narrative length, and humor density indicate that performance improves when the model adapts to individual performers' pacing and delivery styles. The study also introduces punchline-aware evaluation as a critical metric for assessing summarization quality in humor-centric domains. The findings contribute to advancing discourse-sensitive summarization methods and offer practical implications for designing humor-aware AI systems. This research underscores the importance of combining structural linguistics, behavioral annotation, and deep learning to capture the complexity of comedic communication in narrative texts.
Comparative Performance of Transformer Models for Cultural Heritage in NLP Tasks Suryanto, Tri Lathif Mardi; Wibawa, Aji Prasetya; Hariyono, Hariyono; Nafalski, Andrew
Advance Sustainable Science Engineering and Technology Vol. 7 No. 1 (2025): November-January
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v7i1.1211

Abstract

AI and Machine Learning are crucial in advancing technology, especially for processing large, complex datasets. The transformer model, a primary approach in natural language processing (NLP), enables applications like translation, text summarization, and question-answer (QA) systems. This study compares two popular transformer models, FlanT5 and mT5, which are widely used yet often struggle to capture the specific context of the reference text. Using a unique Goddess Durga QA dataset with specialized cultural knowledge about Indonesia, this research tests how effectively each model can handle culturally specific QA tasks. The study involved data preparation, initial model training, ROUGE metric evaluation (ROUGE-1, ROUGE-2, ROUGE-L, and ROUGE-Lsum), and result analysis. Findings show that FlanT5 outperforms mT5 on multiple metrics, making it better at preserving cultural context. These results are impactful for NLP applications that rely on cultural insight, such as cultural preservation QA systems and context-based educational platforms.
Contextual Relevance-Driven Question Answering Generation: Experimental Insights Using Transformer-Based Models Suryanto, Tri Lathif Mardi; Wibawa, Aji Prasetya; Hariyono, Hariyono; Shili, Hechmi
International Journal of Engineering, Science and Information Technology Vol 5, No 4 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i4.989

Abstract

This study investigates the impact of contextual relevance and hyperparameter tuning on the performance of Transformer-based models in Question-Answer Generation (QAG). Utilising the FlanT5 model, experiments were conducted on a domain-specific dataset to assess how variations in learning rate and training epochs affect model accuracy and generalisation. Six QAG models were developed (QAG-A to QAG-F), each evaluated using ROUGE metrics to measure the quality of generated question-answer pairs. Results show that QAG-F and QAG-D achieved the highest performance, with QAG-F reaching a ROUGE-LSum of 0.4985. The findings highlight that careful tuning of learning rates and training duration significantly improves model performance, enabling more accurate and contextually appropriate question generation. Furthermore, the ability to generate both questions and answers from a single input enhances the interactivity and utility of NLP systems, particularly in knowledge-intensive domains. This study underscores the importance of contextual modelling and hyperparameter optimisation in generative NLP tasks, offering practical insights for improving chatbot development, educational tools, and digital heritage applications.
Unveiling Risk Patterns of Disability Progression A Clustering Based Transition Matrix Analysis Using Indonesian National Data Setiawan, Ariyono; Bin Abdul Hadi, Abdul Razak; Faller, Erwin; Wibawa, Aji Prasetya
Indonesian Journal of Data Science, IoT, Machine Learning and Informatics Vol 5 No 2 (2025): August
Publisher : Research Group of Data Engineering, Faculty of Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/dinda.v5i2.1868

Abstract

This study investigates the progression of disability severity from "some difficulty" to "a lot of difficulty" using a transition matrix framework. It aims to identify risk patterns and classify severity clusters based on national survey data from Indonesia between 2010 and 2023. The study draws on the theory of functional limitation progression, which assumes that individuals with mild disabilities face varying probabilities of developing severe limitations depending on contextual and demographic factors. It also incorporates clustering theory to group similar progression behaviors. We utilize 20,604 data points from multiple disability types (cognitive, hearing, mobility, etc.). The transition rate is computed as the ratio of individuals with "a lot" difficulty to the total with "some" and "a lot" difficulty. Statistical analyses include descriptive summaries, Pearson correlation, and K-Means clustering via the FASTCLUS procedure. Heatmaps are generated to observe annual and typological patterns. The average transition rate is 66.77%, with a maximum of 99.6% in some subgroups. Three distinct severity clusters emerged, centered at 31.27%, 58.62%, and 82.20%. Transition rate negatively correlates with "some difficulty" prevalence (r = –0.45, p < .0001), indicating progressive concentration of severity in smaller populations. Heatmaps reveal consistent risk escalation over time, especially in cognitive and self-care disabilities. This study enables policy actors to stratify intervention priorities and monitor disability risk more accurately using dynamic, data-driven indicators. This is the first study in Indonesia to apply a large-scale transition matrix combined with clustering to map functional disability progression. It offers a novel quantitative method to uncover hidden severity patterns and informs future decision-support systems for inclusive health planning.
Internalizing religious tolerance in elementary schools: Reality and alternative solution Rahmadonna, Sisca; Setyosari, Punaji; Kuswandi, Dedi; Praherdhiono, Hendy; Wibawa, Aji Prasetya
International Journal of Education and Learning Vol 6, No 3 (2024): December
Publisher : Association for Scientific Computing Electrical and Engineering(ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijele.v6i3.1903

Abstract

Religious intolerance is rising globally, including in Indonesia, a pluralistic nation with over 600 ethnic groups and six official religions. Ironically, cases of intolerance have emerged even in Yogyakarta, an educational and cultural barometer renowned for its local wisdom of tepa selira (mutual respect). This study investigates how elementary school teachers in Yogyakarta, Indonesia understand and internalize religious tolerance in classroom practices. Employing a qualitative phenomenological approach, data were collected through interviews, observations, FGDs, and document analysis involving 20 teachers from 10 diverse elementary schools. Findings indicate that most teachers focus on cognitive outcomes and struggle to assess tolerance in the affective domain. However, one multicultural school Pelangi Elementary demonstrates an alternative approach by emphasizing shared human values such as kindness, gratitude, and togetherness, and by removing formal religious instruction to foster inclusivity. The school integrates dialogical pedagogy, parental involvement, and community engagement, making tolerance a lived experience rather than a theoretical concept. This study concludes that religious tolerance education in diverse societies must move beyond textbooks toward character-based, participatory learning rooted in local wisdom and inclusive practice. The Pelangi model offers a promising strategy adaptable to other pluralistic contexts.
Co-Authors A.N. Afandi Abd. Rasyid Syamsuri Abdur Rohman Achmad Fanany Onnilita Gaffar Adaby, Resnu Wahyu Ade Kurnia Ganesh Akbari Aditya Wahyu Setiawan Adjie Rosyidin Adnan, Adam Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agus Purnomo Ahmad Munjin Nasih Ahmad Naim Che Pee Ahmad Taufiq Aindra, Alifah Diantebes Aji, Bayu Kuncoro Akbari, Ade Kurnia Ganesh Akhimullah Akmal Fattah Akhmad Fanny Fadhilla Akrom Tegar Khomeiny Alfiansyah Putra Pertama Triono Ali, Martina Alifah Diantebes Aindra Amro, Manar Y Anak Agung Istri Sri Wiadnyani Andien Khansa’a Iffat Paramarta Andika Dwiyanto, Felix Andini, Nurul Fajriah Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andri Pranolo Andriansyah, Muhammad Rizal Angeline, Grace Anggreani, Desi Anik Nur Handayani Anton Prafanto Anusua Ghosh Anusua Ghosh, Anusua Arbian Sulistyo, Danang Ardiansyah, Mohammad Iqbal Firman Aripriharta - Arya Tandy Hermawan Ashar, Muhammad Astuti, Wistiani Atmaja, I Made Ari Dwi Suta Atmaja, Nimas Hadi Ba, Abdoul Fatakhou Bagaskoro, Muhammad Cahyo Bahalwan, Lugas Anegah Baitun Nadhiroh Bambang Widi Pratolo Bella Putra Utama, Agung Betty Masruroh Bety Masruroh Bin Abdul Hadi, Abdul Razak Bin Haji Jait, Adam Cahyo Prayogo, Cahyo Cengiz, Korhan Cholisah Erman Hasihi Chong , Wan Ni Chuttur, Mohammad Yasser Citra Suardi Citra, Hana Rachma Collante, Leonel Hernandez Daniar Wahyu Darwis, Herdianti Dedes, Khen Dedi Kuswandi Dedy Kuswandi Denis Eka Cahyani Denna Delawanti Chrisyarani, Denna Delawanti Desi Anggreani Devita, Riri Nada Dewandra, Aderyan Reynaldi Fahrezza Dewi, Popy Maulida Dhani Wahyu Wijaya Dhani Wahyu Wijaya Dhaniyar Dhaniyar Didik Dwi Prasetya Didik Nurhadi Didik Suprayogo Dika Fikri L Dityo Kreshna Argeshwara Dityo Kreshna Argeshwara Drezewski, Rafał Dwi Jaelani, Mardian dwi yasa, arnelia Dwieb, Mohamed Dwiyanto, Felix Andika Dwiyanto, Felix Andika Dyah Lestari Edinar Valiant Hawali Eka Nurcahya Ningsih Elta Sonalitha Endah Setyo Wardani Erna Daniati Esther Irawati Setiawan Fachrul Kurniawan Fachrul Kurniawan Fadhilah, Farhan Fadhilla, Akhmad Fanny Fadhli Almu’iini Ahda Faidzin, Ilham Fajar Purnama Fajarwati, Erliana Faller, Erwin Faradini Usha Setyaputri Farid Miftahuddin Farida Nur Kumala Fauzan Cahya Arifin Felix Andika Dwiyanto Felix Andika Dwiyanto Felix Andika Dwiyanto Felix Andika Dwiyanto Ferdinand, Miftakhul Anggita Bima Ferina Ayu Pusparani Filby , Brilliant Filby, Brilliant Fitria, Nimas Dian Fitriana Kurniawati Gianika Roman Sosa Graciello, Manuel Tanbica Gülsün Kurubacak Gunawan Gunawan Gwinny Tirza Rarastri Hammad, Jehad A. H. Hammad, Jehad A.H Hari Putranto Haris Anwar Syafrudie Harits Ar Rasyid Harits Ar Rosyid Hariyono Hariyono Hariyono Hariyono Hariyono Hariyono Hartono, Nickolas Hary Suswanto Hasanuddin, Tasrif Hashim, Ummi Raba’ah Haviluddin Haviluddin Haviluddin, - Hendrawan, William Hartanto Herdianti Darwis Heri Pratikto Herman Herman Herman Thuan To Saurik Heru Nurwarsito Heru Wahyu Herwanto Hery Widijanto Hidayah Kariima Fithri Hidayah, Laily Hidayatul Ma&#039;rifah Hitipeuw, Emanuel Hong, Yeap Chi I Made Wirawan I Nyoman Gede Arya Astawa Idris Idris Ilham Mulya Putra Pradana Imansyah, Pranadya Bagus Imro’aturrozaniyah, Imro’aturrozaniyah Inggar Tri Agustin Mawarni Irsyada, Rahmat Islam, Noorul Islami, Pio Arfianova Fitrizky Islami, Pio Arfianova Fitrizky Islami, Pio Arfianova Fitrizky Ismail, Amelia Ritahani Istiqlal, Adib Izdihar, Zahra Nabila Jabari, Nida Jehad A. H. Hammad Jehad A.H. Hammad Jevri Tri Ardiansah Junoh, Ahmad Kadri Juwita Annisa Fauzi Juwita Annisa Fauzi Kaki, Gregorius Paulus Mario Laka Kasturi Kanchymalay, Kasturi Kelvin Wong Khafit Badrus Zaman Khoiruddin Asfanie Khurin Nabila Kirya Mateeke Moses Kohei Arai Kurniawan, Fachrul Kurniawan, Novian Candra Kurniawati, Fitriana Kuswandi, Dedy Laily Hidayah Langlang Gumilar Lauretta, Giovanny Cyntia Lazuardi Noorca Rachmadi Leonel Hernandez Leonel Hernandez Leonel Hernandez, Leonel Lestari, Muqodimah Nur Lestari, Muqodimah Nur Lestari, Muqodimah Nur Liang, Yoeh Wen Lisa Ramadhani Harianti Lisa Ramadhani Harianti Ludovikus Boman Wadu Luther Latumakulita M. Alfian Mizar M. Zainal Arifin Mairi, Vitrail Gloria Mansoor Abdul Hamid Mantony, Oslida Mao, Yingchi Marchena, Piedad Marida, Tyas Agung Cahyaning Marji Marji Markus Diantoro Masruroh, Bety Mazarina Devi Meiga Ayu Ariyanti Mhd. Irvan, Mhd. Irvan Mifta Dewayani Miftahul Qiki Winata Ming F. Teng Ming Foey Teng Ming Foey Teng, Ming Foey Mochamad Hariadi Moh. Zainul Falah Mohamad Rodhi Faiz Mokh Sholihul Hadi Moses, Kirya Mateeke Moses, Kirya Mateeke Moses, Kirya Mateeke Mudakir, Mudakir Muh. Aliyazid Mude Muhamad Arifin Muhammad Busthomi Arviansyah Muhammad Ferdyan Syach Muhammad Firman Aji Saputra Muhammad Iqbal Akbar Muhammad Jauharul Fuadi Muhammad Nu’man Hakim Muhammad, Abdullahi Uwaisu Muladi Munir Munir Muntholib Muqodimah Nur Lestari Mursyit, Mohammad Nabila Izdihar, Zahra Nabila, Khurin Nada, Anita Qotrun Nadhiroh, Baitun Nadia Roosmalita Sari Nadia Roosmalita Sari Nafalski, Andrew Nastiti Susetyo Fanany Putri Naufal, Ayyub Naziro Nedic, Zorica Ningsih, Eka Nurcahya Ningtyas, Yana Novia Ratnasari Noviani, Erina Fika Nugraha, Agil Zaidan Nur Cahyo Wibowo Nur Hidayatullah Nurfadila, Piska Dwi Nurhalifah, Siti Nuril Anwar, Nuril Nurroby Wahyu Saputra Nurul Falah Hashim Nurul Hidayat Nuryana, Zalik Oakley, Simon Okazaki Yasuhisa Oki Dwi Yuliana Omar, Saodah Osamu Fukuda Pakpahan, Herman Santoso Paramarta, Andien Khansa’a Iffat Paul Igunda Machumu Pio Arfianova Fitrizky Islami Praherdhiono, Hendy Prananda Anugrah Prasojo, Fadillah Pratama, Awanda Setya Sanfajar Puji Santoso Puji Santoso Puji Santoso Punaji Setyosari Pundhi Yuliawati Pundhi Yuliawati Purnawansyah Purnawansyah Purnomo Purnomo Purnomo Purnomo Purwatiningsih, Ayu Putra Utama, Agung Bella Putra, Agung Bella Utama Putri Syarifa, Dhea Fanny Putri, Desy Pratiwi Ika Putri, Fadia Irsania Putri, Nastiti Susetyo Fanany Qonita, Adiba Raden Mohamad Herdian Bhakti Rahiddin, Rahillda Nadhirah Norizzaty Rahmadhani, Nur Aini Syafrina Raja, Roesman Ridwan Ratnasari, Novia Rendy Yani Susanto Resty Wulanningrum Ridho, Faiz Mohammad Ridwan Shalahuddin Ridwan Shalahuddin Riri Nada Devita Rizal Kholif Nurrohman Rizqini, Fajriwati Qoyyum Roni Herdianto Rosmin, Norzanah Rr. Poppy Puspitasari, Rr. Poppy Rully Charitas Indra Prahmana Ruth Ema Febrita Saifullah, Shoffan Salahuddin, Lizawati Salsabila, Reni Fatrisna Santoso, Priyo Aji Saputra, Irzan Tri Sari, Nadia Roosmalita Sarni Suhaila Rahim Seno Isbiyantoro Setiawan, Ariyono Setyadi, Hario Jati Setyaputri, Faradini Usha Setyawan P. Sakti Shahrul, Azzhan Shalahuddin, Ridwan Shiddiqy, Jabar Ash Shidiqi, Maulana Ahmad As Shili, Hechmi Sias, Quota Alief Simbolon, Triyanti Sisca Rahmadonna Siti Helmyati Siti Sendari Soenar Soekopitojo Soraya Norma Mustika Stamen Gadzhanov Subadra, ST. Ulfawanti Intan Sucahyo, Cornaldo Beliarding Sugiarto Cokrowibowo Sugiyanto - Suhiro Wongso Susilo Sujito Sujito Sularso Sularso, Sularso Sulistyo, Danang Arbian Sunu Jatmika, Sunu Supeno Mardi Susiki Nugroho, Supeno Mardi Supriadi Supriadi Supriyono Supriyono Suryani, Ani Wilujeng Susilo, Suhiro Wongso Suyono Suyono Suyono Suyono Syaad Patmantara Syaad Patmanthara Syabani, Muhiban Tantri Hari Mukti Tasrif Hasanuddin Trahutomo, Dinnuhoni Tri Andi, Tri Tri Kuncoro Tri Lathif Mardi Suryanto Tri Lathif Mardi Suryanto Tri Saputra, Irzan Tri Sutanti Tri Sutanti, Tri Triono, Alfiansyah Putra Pertama Triyanna Widiyaningtyas Triyanna Widyaningtyas Triyanna Widyaningtyas, Triyanna Tsukasa Hirashima Tuatul Mahfud Ummi Rabaah Hasyim Uriu, Wako Utama , Agung Bella Putra Utama, Agung Bella Putra Utomo Pujianto Vira Setia Ningrum Vira Setia Ningrum Voliansky, Roman Wadu, Ludovikus Boman Wahyu Arbianda Yudha Pratama Wahyu Sakti Gunawan Irianto Wahyu Tri Handoko Wako Uriu Wardani, Endah Setyo Wayan Firdaus Mahmudy Wibowo, Danang Arengga Wibowo, Fauzy Satrio Wibowo, Nur Cahyo Widiharso, Prasetya Widiyanintyas, Triyanna Yandratama, Hengky Yasa, Arnelia Dwi Yingchi Mao Yongen Susman Yosi Kristian Yuliana, Oki Dwi Yuliawati, Pundhi Yuni Rahmawati Yusmanto, Yunan Zaeni, Ilham Ari Elbaith Zhou, Xiaofeng Zulkham Umar Rosyidin Zulkham Umar Rosyidin