p-Index From 2021 - 2026
15.446
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering International Journal of Power Electronics and Drive Systems (IJPEDS) IAES International Journal of Artificial Intelligence (IJ-AI) TEKNIK INFORMATIKA Jurnal Ilmu Pendidikan Tekno : Jurnal Teknologi Elektro dan Kejuruan ELKHA : Jurnal Teknik Elektro Mechatronics, Electrical Power, and Vehicular Technology Jurnal Pendidikan Sains MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Jurnal Informatika Jurnal Infinity Harmonia: Journal of Research and Education Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics Jurnal Sistem Informasi dan Bisnis Cerdas Register: Jurnal Ilmiah Teknologi Sistem Informasi Proceeding of the Electrical Engineering Computer Science and Informatics Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan JOIN (Jurnal Online Informatika) JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Knowledge Engineering and Data Science Jurnal Ilmiah Flash JURNAL MEDIA INFORMATIKA BUDIDARMA Ranah: Jurnal Kajian Bahasa Jurnal Sains dan Informatika Jurnal Inovasi Bisnis (Inovbiz) ILKOM Jurnal Ilmiah at-tamkin: Jurnal Pengabdian kepada Masyarakat SENTIA 2016 SENTIA 2015 Jurnal Teknologi Sistem Informasi dan Aplikasi Journal of Educational Research and Evaluation International Journal of Elementary Education Jurnal Ilmiah Sekolah Dasar Gelar : Jurnal Seni Budaya Prosiding SAKTI (Seminar Ilmu Komputer dan Teknologi Informasi) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Performance PEDULI: Jurnal Imiah Pengabdian Pada Masyarakat Antivirus : Jurnal Ilmiah Teknik Informatika Kumawula: Jurnal Pengabdian Kepada Masyarakat Buletin Ilmiah Sarjana Teknik Elektro Mobile and Forensics International Journal of Visual and Performing Arts Journal of Robotics and Control (JRC) Jurnal Mnemonic Sains, Aplikasi, Komputasi dan Teknologi Informasi Jurnal Teknik Elektro Uniba (JTE Uniba) Frontier Energy System and Power Engineering Belantika Pendidikan Indonesian Journal of Data and Science Letters in Information Technology Education (LITE) Journal of Applied Data Sciences Science in Information Technology Letters International Journal of Engineering, Science and Information Technology International Journal of Robotics and Control Systems Abditeknika - Jurnal Pengabdian Kepada Masyarakat Anjoro : International Journal of Agriculture and Business Journal of Dinda : Data Science, Information Technology, and Data Analytics Indonesian Community Journal International journal of education and learning Buletin Sistem Informasi dan Teknologi Islam Jurnal Sistem Informasi dan Bisnis Cerdas Applied Engineering and Technology Bulletin of Culinary Art and Hospitality Jurnal Inovasi Teknologi dan Edukasi Teknik Bulletin of Social Informatics Theory and Application Journal of Information Technology and Cyber Security KOPEMAS Jurnal Infinity Advance Sustainable Science, Engineering and Technology (ASSET) Signal and Image Processing Letters
Claim Missing Document
Check
Articles

Journal Classification Using Cosine Similarity Method on Title and Abstract with Frequency-Based Stopword Removal  Nurfadila, Piska Dwi; Wibawa, Aji Prasetya; Zaeni, Ilham Ari Elbaith; Nafalski, Andrew
International Journal of Artificial Intelligence Research Vol 3, No 2 (2019): December 2019
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (231.173 KB) | DOI: 10.29099/ijair.v3i2.99

Abstract

Classification of economic journal articles has been done using the VSM (Vector Space Model) approach and the Cosine Similarity method. The results of previous studies are considered to be less optimal because Stopword Removal was carried out by using a dictionary of basic words (tuning). Therefore, the omitted words limited to only basic words. This study shows the improved performance accuracy of the Cosine Similarity method using frequency-based Stopword Removal. The reason is because the term with a certain frequency is assumed to be an insignificant word and will give less relevant results. Performance testing of the Cosine Similarity method that had been added to frequency-based Stopword Removal was done by using K-fold Cross Validation. The method performance produced accuracy value for 64.28%, precision for 64.76 %, and recall for 65.26%. The execution time after pre-processing was 0, 05033 second.
Applied of Analytical Hierarchy Process and Fuzzy Time Series in Hybrid for Optimizing Smart Vertical Farming with Multi-Variety Plants Wibowo, Danang Arengga; Sendari, Siti; Wibawa, Aji Prasetya; Wibowo, Fauzy Satrio
International Journal of Artificial Intelligence Research Vol 7, No 1 (2023): June 2023
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29099/ijair.v7i1.402

Abstract

Vertical Farming is a kind of modern agricultural methods, where the structure of growing racks are arranged upwards. This method aims to optimize the use of agricultural space. There are many plants, which are suitable to be planted for vertical farming, such as Strawberry, Tomatoes, Celery, Chili, Mint, Chives, Kuchay, Spinach, and Water spinach. The problem, which is studied in this paper, is how to control the environments of vertical farming with multi-variety plants. This paper proposed a hybrid method of Analytical Hierarchy Process and Fuzzy Time Series AHP-FTS, that is, plants with similar characteristics are placed at the same block area determined by the method of Analytical Hierarchy Process (AHP). Furthermore, controlling the environments regarding the needs of appropriate growing parameters for multi-variety plants, the Fuzzy Time Series (FTS) method is used. Then, time variable for activating actuators could be adjusted as a multi-control system. The effectiveness of the proposed method was evaluated with 365 record data in 12 months. The result shows that the AHP was successful to determine the multi-criteria to determine the zone and priority of plants. The second stage is that the FTS predicts the temperature to determine time variable for activating actuators, and the third stage is the implemented AHP-FTS as a hybrid system to evaluate the vertical Farming system. The results show that the proposed system works well as hybrid system of AHP-FTS
Journal Unique Visitors Forecasting Based on Multivariate Attributes Using CNN Dewandra, Aderyan Reynaldi Fahrezza; Wibawa, Aji Prasetya; Pujianto, Utomo; Utama, Agung Bella Putra; Nafalski, Andrew
International Journal of Artificial Intelligence Research Vol 6, No 2 (2022): Desember 2022
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (379.839 KB) | DOI: 10.29099/ijair.v6i1.274

Abstract

Forecasting is needed in various problems, one of which is forecasting electronic journals unique visitors. Although forecasting cannot produce very accurate predictions, using the proper method can reduce forecasting errors. In this research, forecasting is done using the Deep Learning method, which is often used to process two-dimensional data, namely convolutional neural network (CNN). One-dimensional CNN comes with 1D feature extraction suitable for forecasting 1D time-series problems. This study aims to determine the best architecture and increase the number of hidden layers and neurons on CNN forecasting results. In various architectural scenarios, CNN performance was measured using the root mean squared error (RMSE). Based on the study results, the best results were obtained with an RMSE value of 2.314 using an architecture of 2 hidden layers and 64 neurons in Model 1. Meanwhile, the significant effect of increasing the number of hidden layers on the RMSE value was only found in Model 1 using 64 or 256 neurons.
Perbandingan Kinerja Metode Naive Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa indonesia Devita, Riri Nada; Herwanto, Heru Wahyu; Wibawa, Aji Prasetya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 4: Agustus 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (793.502 KB) | DOI: 10.25126/jtiik.201854773

Abstract

Kecocokan isi artikel dengan sebuah tema jurnal menjadi faktor utama diterima tidaknya sebuah artikel. Tetapi masih banyak mahasiswa yang bingung untuk menentukan jurnal yang sesuai dengan artikel yang dimilikinya. Untuk itu diperlukannya sebuah metode klasifikasi dokumen yang dapat mengelompokkan artikel secara otomatis dan akurat. Terdapat banyak metode klasifikasi yang dapat digunakan. Metode yang digunakan dalam penelitian ini adalah Naive Bayes dan sebagai baseline digunakan metode K-Nearest Neighbor. Metode Naive Bayes dipilih karena dapat menghasilkan akurasi yang maksimal dengan data latih yang sedikit. Sedangkan metode K-Nearest Neighbor dipilih karena metode tersebut tangguh terhadap data noise. Kinerja dari kedua metode tersebut akan dibandingkan, sehingga dapat diketahui metode mana yang lebih baik dalam melakukan klasifikasi dokumen. Hasil yang didapatkan menunjukkan metode Naive Bayes memiliki kinerja yang lebih baik dengan tingkat akurasi 70%, sedangkan metode K-Nearest Neighbor memiliki tingkat akurasi yang cukup rendah yaitu 40%. AbstractOne way to be accepted in a journal conference and get the publication is to create an article with perfect suitability content of the journal. Matching the content of the article with a journal theme is the main factor for acceptability an article. But there are still many students who are confused to choose the journal in accordance with the articles it has. So we need a method to classification article documents category automatically and accurately group articles. There are many classification methods that can be used. The method used in this study is Naive Bayes and as a baseline the K-Nearest Neighbor method. Naive Bayes method is chosen because it can produce maximum accuracy with little training data. While K-Nearest Neighbor method was chosen because the method is robust to data noise. The performance of the two methods will be compared, so we can be known which method is better in classifying the document. The results show that the Naive Bayes method performs is more accurate with 70% accuracy and K-Nearest Neighbors method has a fairly low accuracy of 40% on classification test.
Facemask Detection using the YOLO-v5 Algorithm: Assessing Dataset Variation and R esolutions Kurniawan, Fachrul; Astawa, I Nyoman Gede Arya; Atmaja, I Made Ari Dwi Suta; Wibawa, Aji Prasetya
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 9 No 2 (2023): July
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v9i2.3249

Abstract

The Covid-19 pandemic has made it imperative to prioritize health standards in companies and public areas with a large number of people. Typically, officers oversee the usage of masks in public spaces; however, computer vision can be employed to facilitate this process. This study focuses on the detection of facemask usage utilizing the YOLO-v5 algorithm across various datasets and resolutions. Three datasets were employed: the face with mask dataset (M dataset), the synthetic dataset (S dataset), and the combined dataset (G dataset), with image resolutions of 320 pixels and 640 pixels, respectively. The objective of this study is to assess the accuracy of the YOLO-v5 algorithm in detecting whether an individual is wearing a mask or not. In addition, the algorithm was tested on a dataset comprising individuals wearing masks and a synthetic dataset. The training results indicate that higher resolutions lead to longer training times, but yield excellent prediction outcomes. The system test results demonstrate that face image detection using the YOLO-v5 method performs exceptionally well at a resolution of 640 pixels, achieving a detection rate of 99.2 percent for the G dataset, 98.5 percent for the S dataset, and 98.9 percent for the M dataset. These test results provide evidence that the YOLO-v5 algorithm is highly recommended for accurate detection of facemask usage.
Pengembangan Sistem Informasi Pengelolaan Konferensi Internasional Universitas Negeri Malang dengan Menggunakan Metode Waterfall Wibawa, Aji Prasetya; Diantoro, Markus; Idris, Idris; Purnomo, Agus; Kurniawan, Novian Candra
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 1 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i1.34974

Abstract

An international conference is an event that involves researchers from around the world. This will certainly provide a broader view of the knowledge gained. Problems with the information system managed by the organizer. This problem will certainly hamper the productivity of the organizers. Therefore, the focus of this development is to provide convenience for organizers in conducting conference management that is being held. The method used in this research is waterfall using 4 stages, namely analysis, design, coding, and testing.  The selection of the waterfall method is because the stages in the waterfall are systematic in sequence. This certainly makes it easy for developers to create information systems. The results of this development resulted in an application entitled International Conference State University of Malang "ICON-UM". Based on the results of black-box testing, it is interpreted that all functions developed run optimally. This system can be a recommendation for international conference organizers.
Implementasi Mesin Pencacah Rumput Otomatis Menggunakan Panel Surya sebagai Solusi Efektif untuk Ternak Sapi Aripriharta, Aripriharta; Wibawa, Aji Prasetya; Sujito, Sujito; Mizar, Alfian; Faidzin, Ilham; Rahmadhani, Nur Aini Syafrina; Bagaskoro, Muhammad Cahyo
Abditeknika Jurnal Pengabdian Masyarakat Vol. 4 No. 2 (2024): Oktober
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/abditeknika.v4i2.4919

Abstract

Peternakan Lembu Ndeso yang berlokasi di Desa Kedungrejo, Kecamatan Pakis, Kabupaten Malang, Jawa Timur 65154 dan berfokus pada perkembangbiakan sapi. Peternakan ini menghadapi kesulitan signifikan dalam memproses pakan ternak secara efisien dan dalam jumlah yang memadai. Proses pencacahan pakan secara manual tidak hanya memakan waktu dan tenaga yang besar, tetapi juga menghasilkan hasil yang tidak seragam dan tidak efisien, yang menyebabkan pemborosan sumber daya. Dampaknya, produktivitas peternakan sapi terhambat dan pendapatan peternak menurun. Solusi yang diusulkan adalah penggunaan teknologi tepat guna (TTG) berupa mesin pencacah rumput yang didukung oleh Pembangkit Listrik Tenaga Surya (PLTS). Mesin ini dirancang untuk mempercepat dan meningkatkan efisiensi proses pencacahan pakan ternak. Manfaatnya termasuk peningkatan efisiensi dan efektivitas pencacahan pakan, proses yang lebih ramah lingkungan dengan memanfaatkan energi surya, serta kemudahan dalam pengendalian dan pemantauan operasional mesin. Proses perencanaan dan perancangan teknologi ini melibatkan observasi langsung, pencatatan detail, dan wawancara dengan mitra usaha, dengan tujuan menghasilkan solusi TTG yang berkelanjutan dan memberikan manfaat jangka panjang bagi para peternak Lembu Ndeso. Dengan demikian, teknologi ini diharapkan dapat membantu peternak dalam mengelola pakan ternak mereka secara lebih efisien dan meningkatkan kesejahteraan peternak. Hasil implementasi menunjukkan bahwa mesin pencacah rumput yang didukung PLTS berhasil meningkatkan efisiensi proses pencacahan pakan, dengan panel surya menghasilkan daya optimal pada cuaca cerah dan tetap berfungsi meskipun ada variasi cuaca. Pelatihan penggunaan mesin kepada warga Desa Kedungrejo mendapat antusiasme tinggi, dan serah terima teknologi kepada mitra berjalan lancar, menandakan potensi keberlanjutan penggunaan teknologi ini untuk meningkatkan produktivitas peternakan Lembu Ndeso.   Lembu Ndeso Farm, located in Kedungrejo Village, Pakis District, Malang Regency, East Java 65154, focuses on cattle breeding. The farm faced significant difficulties in processing animal feed efficiently and in sufficient quantities. The manual process of chopping feed is not only time-consuming and labor-intensive, but also produces non-uniform and inefficient results, leading to a waste of resources. As a result, cattle farming productivity is hampered and farmers' income decreases. The proposed solution is the use of appropriate technology (TTG) in the form of a grass chopping machine powered by a Solar Power Plant (PLTS). The machine is designed to speed up and improve the efficiency of the fodder chopping process. The benefits include increased efficiency and effectiveness of feed chopping, a more environmentally friendly process by utilizing solar energy, and ease in controlling and monitoring machine operations. The process of planning and designing this technology involved direct observation, detailed note-taking and interviews with business partners, aiming to produce a sustainable TTG solution that provides long-term benefits to Lembu Ndeso farmers. Thus, this technology is expected to help farmers manage their animal feed more efficiently and improve the welfare of farmers.
Comparison of Adam Optimization and RMS prop in Minangkabau-Indonesian Bidirectional Translation with Neural Machine Translation Ahda, Fadhli Almu'iini; Wibawa, Aji Prasetya; Dwi Prasetya, Didik; Arbian Sulistyo, Danang
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.1818

Abstract

Language is a tool humans use to establish communication. Still, the language used is one language and between regions or nations with their languages. Indonesia is a country that has a diversity of second languages and is the fourth most populous country in the world. It is recorded that Indonesia has nearly 800 regional languages, but research activities in natural language processing are still lacking. Minangkabau is an endangered language spoken by the Minangkabau people in Indonesia's West Sumatra province. According to UNESCO, the Minangkabau language is listed as a language that is "definitely endangered," with only around 5 million speakers worldwide. This study uses neural machine translation (NMT) to create a formula based on this information. Neural machine translation, in contrast to conventional statistical machine translation, intends to build a single neural network that can be built up to achieve the best performance. Because it can simultaneously hold memory for a long time, comprehend complicated relationships in data, and provide information that is very important in determining the outcome of translation, LSTM is one of the most powerful machine-learning techniques for translating languages. The BLUE score is utilized in the NMT evaluation. The test results use 520 Minangkabau sentences, conducting tests based on the number of epochs ranging from 100-1000, resulting in optimization using Adam being better than optimization RMSprop. This is evidenced by the results of the best BLUE-1 score of 0.997816 using 1000 epochs.
Attention-Enhanced Convolutional Neural Network for Context Extraction in Andersen's Fairy Tales Daniati, Erna; Wibawa, Aji Prasetya; Irianto, Wahyu Sakti Gunawan; Nafalski, Andrew
JOIV : International Journal on Informatics Visualization Vol 9, No 6 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.6.4056

Abstract

Event extraction in classic literature and fairy tales remains highly challenging due to their non-linear plot structures, archaic linguistic expressions, and intricate character interactions, while advances in modern NLP still show limitations in capturing subtle narrative cues in historical texts. This study aims to address these gaps by developing an event extraction model tailored to the narrative characteristics of Hans Christian Andersen’s fairy tales. We propose a BERT-enhanced Context-aware Convolutional Neural Network (CNN) that integrates an attention mechanism to overcome the limited contextual range of traditional CNNs. The model leverages BERT’s contextual embeddings enriched with an attention layer to detect event triggers, character relations, and narrative transitions across nonlinear storylines. A hybrid dataset was constructed through system-generated annotations refined via manual verification and combined with AN/an cartoon-based representations for model training and final testing. Experimental results show that the proposed model surpasses both the CNN-only baseline and a rule-based approach, achieving precision of 0.92, recall of 0.89, F1-score of 0.90, and accuracy of 0.91, outperforming the CNN baseline (0.85/0.82/0.83/0.84) and rule-based system (0.78/0.75/0.76/0.77). These findings highlight the effectiveness of context-aware representations for processing literary narratives and demonstrate interdisciplinary relevance to digital humanities and AI-based storytelling, with future extensions envisioned for multilingual settings and genre-specific adaptations.
Geographic-Origin Music Classification from Numerical Audio Features: Integrating Unsupervised Clustering with Supervised Models Pranolo, Andri; Sularso, Sularso; Anwar, Nuril; Putra, Agung Bella Utama; Wibawa, Aji Prasetya; Saifullah, Shoffan; Dreżewski, Rafał; Nuryana, Zalik; Andi, Tri
Buletin Ilmiah Sarjana Teknik Elektro Vol. 7 No. 4 (2025): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v7i4.13400

Abstract

Classifying the geographic origin of music is a relevant task in music information retrieval, yet most studies have focused on genre or style recognition rather than regional origin. This study evaluates Support Vector Machine (SVM) and Convolutional Neural Network (CNN) models on the UCI Geographical Origin of Music dataset (1,059 tracks from 33 non-Western regions) using numerical audio features. To incorporate latent structure, we first applied K-means clustering with the optimal number of clusters (k=2) determined by the Elbow and Silhouette methods. The cluster assignments were used as auxiliary signals for training, while evaluation relied on the true region labels. Classification performance was assessed with Accuracy, Precision, Recall, and F1-score. Results show that SVM achieved 99.53% accuracy (95% CI: 97.38–99.92%), while CNN reached 98.58% accuracy (95% CI: 95.92–99.52%); Precision, Recall, and F1 mirrored these values. The differences confirm SVM’s superior performance on this dataset, though the near-perfect scores also suggest strong separability in the feature space and potential risks of overfitting. Learning-curve analysis indicated stable training, and cluster supervision provided small but consistent benefits. Overall, SVM remains a reliable baseline for tabular music features, while CNNs may require spectro-temporal representations to leverage their full potential. Future work should validate these findings across multiple datasets, apply cross-validation with statistical significance testing, and explore hybrid deep models for broader generalization.
Co-Authors A.N. Afandi Abd. Rasyid Syamsuri Abdur Rohman Achmad Fanany Onnilita Gaffar Adaby, Resnu Wahyu Ade Kurnia Ganesh Akbari Aditya Wahyu Setiawan Adjie Rosyidin Adnan, Adam Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agus Purnomo Ahmad Munjin Nasih Ahmad Naim Che Pee Ahmad Taufiq Aindra, Alifah Diantebes Aji, Bayu Kuncoro Akbari, Ade Kurnia Ganesh Akhimullah Akmal Fattah Akhmad Fanny Fadhilla Akrom Tegar Khomeiny Alfiansyah Putra Pertama Triono Ali, Martina Alifah Diantebes Aindra Amro, Manar Y Anak Agung Istri Sri Wiadnyani Andien Khansa’a Iffat Paramarta Andika Dwiyanto, Felix Andini, Nurul Fajriah Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andri Pranolo Andriansyah, Muhammad Rizal Angeline, Grace Anggreani, Desi Anik Nur Handayani Anton Prafanto Anusua Ghosh Anusua Ghosh, Anusua Arbian Sulistyo, Danang Ardiansyah, Mohammad Iqbal Firman Aripriharta - Arya Tandy Hermawan Ashar, Muhammad Astuti, Wistiani Atmaja, I Made Ari Dwi Suta Atmaja, Nimas Hadi Ba, Abdoul Fatakhou Bagaskoro, Muhammad Cahyo Bahalwan, Lugas Anegah Baitun Nadhiroh Bambang Widi Pratolo Bella Putra Utama, Agung Betty Masruroh Bety Masruroh Bin Abdul Hadi, Abdul Razak Bin Haji Jait, Adam Cahyo Prayogo, Cahyo Cengiz, Korhan Cholisah Erman Hasihi Chong , Wan Ni Chuttur, Mohammad Yasser Citra Suardi Citra, Hana Rachma Collante, Leonel Hernandez Daniar Wahyu Darwis, Herdianti Dedes, Khen Dedi Kuswandi Dedy Kuswandi Denis Eka Cahyani Denna Delawanti Chrisyarani, Denna Delawanti Desi Anggreani Devita, Riri Nada Dewandra, Aderyan Reynaldi Fahrezza Dewi, Popy Maulida Dhani Wahyu Wijaya Dhani Wahyu Wijaya Dhaniyar Dhaniyar Didik Dwi Prasetya Didik Nurhadi Didik Suprayogo Dika Fikri L Dityo Kreshna Argeshwara Dityo Kreshna Argeshwara Drezewski, Rafał Dwi Jaelani, Mardian dwi yasa, arnelia Dwieb, Mohamed Dwiyanto, Felix Andika Dwiyanto, Felix Andika Dyah Lestari Edinar Valiant Hawali Eka Nurcahya Ningsih Elta Sonalitha Endah Setyo Wardani Erna Daniati Esther Irawati Setiawan Fachrul Kurniawan Fachrul Kurniawan Fadhilah, Farhan Fadhilla, Akhmad Fanny Fadhli Almu’iini Ahda Faidzin, Ilham Fajar Purnama Fajarwati, Erliana Faller, Erwin Faradini Usha Setyaputri Farid Miftahuddin Farida Nur Kumala Fauzan Cahya Arifin Felix Andika Dwiyanto Felix Andika Dwiyanto Felix Andika Dwiyanto Felix Andika Dwiyanto Ferdinand, Miftakhul Anggita Bima Ferina Ayu Pusparani Filby , Brilliant Filby, Brilliant Fitria, Nimas Dian Fitriana Kurniawati Gianika Roman Sosa Graciello, Manuel Tanbica Gülsün Kurubacak Gunawan Gunawan Gwinny Tirza Rarastri Hammad, Jehad A. H. Hammad, Jehad A.H Hari Putranto Haris Anwar Syafrudie Harits Ar Rasyid Harits Ar Rosyid Hariyono Hariyono Hariyono Hariyono Hariyono Hariyono Hartono, Nickolas Hary Suswanto Hasanuddin, Tasrif Hashim, Ummi Raba’ah Haviluddin Haviluddin Haviluddin, - Hendrawan, William Hartanto Herdianti Darwis Heri Pratikto Herman Herman Herman Thuan To Saurik Heru Nurwarsito Heru Wahyu Herwanto Hery Widijanto Hidayah Kariima Fithri Hidayah, Laily Hidayatul Ma'rifah Hitipeuw, Emanuel Hong, Yeap Chi I Made Wirawan I Nyoman Gede Arya Astawa Idris Idris Ilham Mulya Putra Pradana Imansyah, Pranadya Bagus Imro’aturrozaniyah, Imro’aturrozaniyah Inggar Tri Agustin Mawarni Irsyada, Rahmat Islam, Noorul Islami, Pio Arfianova Fitrizky Islami, Pio Arfianova Fitrizky Islami, Pio Arfianova Fitrizky Ismail, Amelia Ritahani Istiqlal, Adib Izdihar, Zahra Nabila Jabari, Nida Jehad A. H. Hammad Jehad A.H. Hammad Jevri Tri Ardiansah Junoh, Ahmad Kadri Juwita Annisa Fauzi Juwita Annisa Fauzi Kaki, Gregorius Paulus Mario Laka Kasturi Kanchymalay, Kasturi Kelvin Wong Khafit Badrus Zaman Khoiruddin Asfanie Khurin Nabila Kirya Mateeke Moses Kohei Arai Kurniawan, Fachrul Kurniawan, Novian Candra Kurniawati, Fitriana Kuswandi, Dedy Laily Hidayah Langlang Gumilar Lauretta, Giovanny Cyntia Lazuardi Noorca Rachmadi Leonel Hernandez Leonel Hernandez Leonel Hernandez, Leonel Lestari, Muqodimah Nur Lestari, Muqodimah Nur Lestari, Muqodimah Nur Liang, Yoeh Wen Lisa Ramadhani Harianti Lisa Ramadhani Harianti Ludovikus Boman Wadu Luther Latumakulita M. Alfian Mizar M. Zainal Arifin Mairi, Vitrail Gloria Mansoor Abdul Hamid Mantony, Oslida Mao, Yingchi Marchena, Piedad Marida, Tyas Agung Cahyaning Marji Marji Markus Diantoro Masruroh, Bety Mazarina Devi Meiga Ayu Ariyanti Mhd. Irvan, Mhd. Irvan Mifta Dewayani Miftahul Qiki Winata Ming F. Teng Ming Foey Teng Ming Foey Teng, Ming Foey Mochamad Hariadi Moh. Zainul Falah Mohamad Rodhi Faiz Mokh Sholihul Hadi Moses, Kirya Mateeke Moses, Kirya Mateeke Moses, Kirya Mateeke Mudakir, Mudakir Muh. Aliyazid Mude Muhamad Arifin Muhammad Busthomi Arviansyah Muhammad Ferdyan Syach Muhammad Firman Aji Saputra Muhammad Iqbal Akbar Muhammad Jauharul Fuadi Muhammad Nu’man Hakim Muhammad, Abdullahi Uwaisu Muladi Munir Munir Muntholib Muqodimah Nur Lestari Mursyit, Mohammad Nabila Izdihar, Zahra Nabila, Khurin Nada, Anita Qotrun Nadhiroh, Baitun Nadia Roosmalita Sari Nadia Roosmalita Sari Nafalski, Andrew Nastiti Susetyo Fanany Putri Naufal, Ayyub Naziro Nedic, Zorica Ningsih, Eka Nurcahya Ningtyas, Yana Novia Ratnasari Noviani, Erina Fika Nugraha, Agil Zaidan Nur Cahyo Wibowo Nur Hidayatullah Nurfadila, Piska Dwi Nurhalifah, Siti Nuril Anwar, Nuril Nurroby Wahyu Saputra Nurul Falah Hashim Nurul Hidayat Nuryana, Zalik Oakley, Simon Okazaki Yasuhisa Oki Dwi Yuliana Omar, Saodah Osamu Fukuda Pakpahan, Herman Santoso Paramarta, Andien Khansa’a Iffat Paul Igunda Machumu Pio Arfianova Fitrizky Islami Praherdhiono, Hendy Prananda Anugrah Prasojo, Fadillah Pratama, Awanda Setya Sanfajar Puji Santoso Puji Santoso Puji Santoso Punaji Setyosari Pundhi Yuliawati Pundhi Yuliawati Purnawansyah Purnawansyah Purnomo Purnomo Purnomo Purnomo Purwatiningsih, Ayu Putra Utama, Agung Bella Putra, Agung Bella Utama Putri Syarifa, Dhea Fanny Putri, Desy Pratiwi Ika Putri, Fadia Irsania Putri, Nastiti Susetyo Fanany Qonita, Adiba Raden Mohamad Herdian Bhakti Rahiddin, Rahillda Nadhirah Norizzaty Rahmadhani, Nur Aini Syafrina Raja, Roesman Ridwan Ratnasari, Novia Rendy Yani Susanto Resty Wulanningrum Ridho, Faiz Mohammad Ridwan Shalahuddin Ridwan Shalahuddin Riri Nada Devita Rizal Kholif Nurrohman Rizqini, Fajriwati Qoyyum Roni Herdianto Rosmin, Norzanah Rr. Poppy Puspitasari, Rr. Poppy Rully Charitas Indra Prahmana Ruth Ema Febrita Saifullah, Shoffan Salahuddin, Lizawati Salsabila, Reni Fatrisna Santoso, Priyo Aji Saputra, Irzan Tri Sari, Nadia Roosmalita Sarni Suhaila Rahim Seno Isbiyantoro Setiawan, Ariyono Setyadi, Hario Jati Setyaputri, Faradini Usha Setyawan P. Sakti Shahrul, Azzhan Shalahuddin, Ridwan Shiddiqy, Jabar Ash Shidiqi, Maulana Ahmad As Shili, Hechmi Sias, Quota Alief Simbolon, Triyanti Sisca Rahmadonna Siti Helmyati Siti Sendari Soenar Soekopitojo Soraya Norma Mustika Stamen Gadzhanov Subadra, ST. Ulfawanti Intan Sucahyo, Cornaldo Beliarding Sugiarto Cokrowibowo Sugiyanto - Suhiro Wongso Susilo Sujito Sujito Sularso Sularso, Sularso Sulistyo, Danang Arbian Sunu Jatmika, Sunu Supeno Mardi Susiki Nugroho, Supeno Mardi Supriadi Supriadi Supriyono Supriyono Suryani, Ani Wilujeng Susilo, Suhiro Wongso Suyono Suyono Suyono Suyono Syaad Patmantara Syaad Patmanthara Syabani, Muhiban Tantri Hari Mukti Tasrif Hasanuddin Trahutomo, Dinnuhoni Tri Andi, Tri Tri Kuncoro Tri Lathif Mardi Suryanto Tri Lathif Mardi Suryanto Tri Saputra, Irzan Tri Sutanti Tri Sutanti, Tri Triono, Alfiansyah Putra Pertama Triyanna Widiyaningtyas Triyanna Widyaningtyas Triyanna Widyaningtyas, Triyanna Tsukasa Hirashima Tuatul Mahfud Ummi Rabaah Hasyim Uriu, Wako Utama , Agung Bella Putra Utama, Agung Bella Putra Utomo Pujianto Vira Setia Ningrum Vira Setia Ningrum Voliansky, Roman Wadu, Ludovikus Boman Wahyu Arbianda Yudha Pratama Wahyu Sakti Gunawan Irianto Wahyu Tri Handoko Wako Uriu Wardani, Endah Setyo Wayan Firdaus Mahmudy Wibowo, Danang Arengga Wibowo, Fauzy Satrio Wibowo, Nur Cahyo Widiharso, Prasetya Widiyanintyas, Triyanna Yandratama, Hengky Yasa, Arnelia Dwi Yingchi Mao Yongen Susman Yosi Kristian Yuliana, Oki Dwi Yuliawati, Pundhi Yuni Rahmawati Yusmanto, Yunan Zaeni, Ilham Ari Elbaith Zhou, Xiaofeng Zulkham Umar Rosyidin Zulkham Umar Rosyidin