p-Index From 2021 - 2026
15.446
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering International Journal of Power Electronics and Drive Systems (IJPEDS) IAES International Journal of Artificial Intelligence (IJ-AI) TEKNIK INFORMATIKA Jurnal Ilmu Pendidikan Tekno : Jurnal Teknologi Elektro dan Kejuruan ELKHA : Jurnal Teknik Elektro Mechatronics, Electrical Power, and Vehicular Technology Jurnal Pendidikan Sains MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Jurnal Informatika Jurnal Infinity Harmonia: Journal of Research and Education Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics Jurnal Sistem Informasi dan Bisnis Cerdas Register: Jurnal Ilmiah Teknologi Sistem Informasi Proceeding of the Electrical Engineering Computer Science and Informatics Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan JOIN (Jurnal Online Informatika) JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Knowledge Engineering and Data Science Jurnal Ilmiah Flash JURNAL MEDIA INFORMATIKA BUDIDARMA Ranah: Jurnal Kajian Bahasa Jurnal Sains dan Informatika Jurnal Inovasi Bisnis (Inovbiz) ILKOM Jurnal Ilmiah at-tamkin: Jurnal Pengabdian kepada Masyarakat SENTIA 2016 SENTIA 2015 Jurnal Teknologi Sistem Informasi dan Aplikasi Journal of Educational Research and Evaluation International Journal of Elementary Education Jurnal Ilmiah Sekolah Dasar Gelar : Jurnal Seni Budaya Prosiding SAKTI (Seminar Ilmu Komputer dan Teknologi Informasi) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Performance PEDULI: Jurnal Imiah Pengabdian Pada Masyarakat Antivirus : Jurnal Ilmiah Teknik Informatika Kumawula: Jurnal Pengabdian Kepada Masyarakat Buletin Ilmiah Sarjana Teknik Elektro Mobile and Forensics International Journal of Visual and Performing Arts Journal of Robotics and Control (JRC) Jurnal Mnemonic Sains, Aplikasi, Komputasi dan Teknologi Informasi Jurnal Teknik Elektro Uniba (JTE Uniba) Frontier Energy System and Power Engineering Belantika Pendidikan Indonesian Journal of Data and Science Letters in Information Technology Education (LITE) Journal of Applied Data Sciences Science in Information Technology Letters International Journal of Engineering, Science and Information Technology International Journal of Robotics and Control Systems Abditeknika - Jurnal Pengabdian Kepada Masyarakat Anjoro : International Journal of Agriculture and Business Journal of Dinda : Data Science, Information Technology, and Data Analytics Indonesian Community Journal International journal of education and learning Buletin Sistem Informasi dan Teknologi Islam Jurnal Sistem Informasi dan Bisnis Cerdas Applied Engineering and Technology Bulletin of Culinary Art and Hospitality Jurnal Inovasi Teknologi dan Edukasi Teknik Bulletin of Social Informatics Theory and Application Journal of Information Technology and Cyber Security KOPEMAS Jurnal Infinity Advance Sustainable Science, Engineering and Technology (ASSET) Signal and Image Processing Letters
Claim Missing Document
Check
Articles

Comparative Study of Herbal Leaves Classification using Hybrid of GLCM-SVM and GLCM-CNN Purnawansyah Purnawansyah; Aji Prasetya Wibawa; Triyanna Widyaningtyas; Haviluddin Haviluddin; Cholisah Erman Hasihi; Ming Foey Teng; Herdianti Darwis
ILKOM Jurnal Ilmiah Vol 15, No 2 (2023)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v15i2.1759.382-389

Abstract

Indonesia is a tropical country with a diverse range of plants that ancient people used for traditional medicines. However, the similarity in shape of the leaves became an obstacle to distinguishing them. Therefore, technological advancements are expected to help identify the herbal leaves to use them right on target according to their efficacy. In this research, image classification of katuk (Sauropus Androgynus) and kelor (Moringa Oleifera) leaves is applied using 3 different algorithms i.e hybrid of Gray Level Co-Occurrence Matrix (GLCM) feature extraction and Support Vector Machine (SVM) implementing 4 kernels namely linear, RBF, polynomial, and sigmoid; hybrid of GLCM and Convolutional Neural Network (CNN); and pure CNN. A dataset of 480 images has been collected with 2 different scenarios, including bright and dark intensities. Based on the result, a hybrid of GLCM and SVM showed the highest accuracy of 96% in the dark intensity test using a linear kernel, while sigmoid obtained the lowest accuracy of 35%. On the other hand, it has been discovered that CNN obtained the highest performance in the bright intensity test with an accuracy of 98%. While in the dark intensity test, a hybrid of GLCM and CNN is superior, obtaining 96% accuracy. In conclusion, CNN is more powerful for image classification with bright intensity. For dark intensity images, both the hybrid of GLCM+SVM (linear) and the hybrid of GLCM+CNN are fairly recommended.
Real-Time Obstacle Detection for Unmanned Surface Vehicle Maneuver Anik Nur Handayani; Ferina Ayu Pusparani; Dyah Lestari; I Made Wirawan; Aji Prasetya Wibawa; Osamu Fukuda
International Journal of Robotics and Control Systems Vol 3, No 4 (2023)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v3i4.1147

Abstract

The rapid advancement and increasing demand for Unmanned Surface Vehicle (USV) technology have drawn considerable attention in various sectors, including commercial, research, and military, particularly in marine and shallow water applications. USVs have the potential to revolutionize monitoring systems in remote areas while reducing labor costs. One critical requirement for USVs is their ability to autonomously integrate Guidance, Navigation, and Control (GNC) technology, enabling self-reliant operation without constant human oversight. However, current study for USV shown the use of traditional method using color detection which is inadequate to detect object with unstable lighting condition. This study addresses the challenge of enabling Autonomous Surface Vehicles (ASVs) to operate with minimal human intervention by enhancing their object detection and classification capabilities. In dynamic environments, such as water surfaces, accurate and rapid object recognition is essential. To achieve this, we focus on the implementation of deep learning algorithms, including the YOLO algorithm, to empower USVs with informed navigation decision-making capabilities. Our research contributes to the field of robotics by designing an affordable USV prototype capable of independent operation characterized by precise object detection and classification. By bridging the gap between advanced visualization techniques and autonomous USV technology, we envision practical applications in remote monitoring and marine operations with object detection. This paper presents the initial phase of our research, emphasizing significance of deep learning algorithms for enhancing USV navigation and decision-making in dynamic environmental conditions, resulting in mAP of 99.51%, IoU of 87.80%, error value of the YOLOv4-tiny image processing algorithm is 0.1542.
Evolving Conversations: A Review of Chatbots and Implications in Natural Language Processing for Cultural Heritage Ecosystems Tri Lathif Mardi Suryanto; Aji Prasetya Wibawa; Hariyono Hariyono; Andrew Nafalski
International Journal of Robotics and Control Systems Vol 3, No 4 (2023)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v3i4.1195

Abstract

Chatbot technology, a rapidly growing field, uses Natural Language Processing (NLP) methodologies to create conversational AI bots. Contextual understanding is essential for chatbots to provide meaningful interactions. Still, to date chatbots often struggle to accurately interpret user input due to the complexity of natural language and diverse fields, hence the need for a Systematic Literature Review (SLR) to investigate the motivation behind the creation of chatbots, their development procedures and methods, notable achievements, challenges and emerging trends. Through the application of the PRISMA method, this paper contributes to revealing the rapid and dynamic progress in chatbot technology with NLP learning models, enabling sophisticated and human-like interactions on the trends observed in chatbots over the past decade. The results, from various fields such as healthcare, organization and business, virtual personalities, to education, do not rule out the possibility of being developed in other fields such as chatbots for cultural preservation while suggesting the need for supervision in the aspects of language comprehension bias and ethics of chatbot users. In the end, the insights gained from SLR have the potential to contribute significantly to the advancement of chatbots on NLP as a comprehensive field.
A Multi Representation Deep Learning Approach for Epileptic Seizure Detection Hermawan, Arya Tandy; Zaeni, Ilham Ari Elbaith; Wibawa, Aji Prasetya; Gunawan, Gunawan; Hendrawan, William Hartanto; Kristian, Yosi
Journal of Robotics and Control (JRC) Vol 5, No 1 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i1.20870

Abstract

Epileptic seizures, unpredictable in nature and potentially dangerous during activities like driving, pose significant risks to individual and public safety. Traditional diagnostic methods, which involve labour-intensive manual feature extraction from Electroencephalography (EEG) data, are being supplanted by automated deep learning frameworks. This paper introduces an automated epileptic seizure detection framework utilizing deep learning to bypass manual feature extraction. Our framework incorporates detailed pre-processing techniques: normalization via L2 normalization, filtering with an 80 Hz and 0,5 Hz Butterworth low-pass and high-pass filter, and a 50 Hz IIR Notch filter, channel selection based on standard deviation calculations and Mutual Information algorithm, and frequency domain transformation using FFT or STFT with Hann windows and 50% hop. We evaluated on two datasets: the first comprising 4 canines and 8 patients with 2.299 ictal, 23.445 interictal, and 32.915 test data, 400-5000Hz sampling rate across 16-72 channels; the second dataset, intended for testing, 733 icatal, 4.314 interictal, and 1908 test data, each 10 minutes long, recorded at 400Hz across 16 channels. Three deep learning architectures were assessed: CNN, LSTM, and a hybrid CNN-LSTM model-stems from their demonstrated efficacy in handling the complex nature of EEG data. Each model offers unique strengths, with the CNN excelling in spatial feature extraction, LSTM in temporal dynamics, and the hybrid model combining these advantages.  The CNN model, comprising 31 layers, yielded highest accuracy, achieving 91% on the first dataset (precision 92%, recall 91%, F1-score 91%) and 82% on the second dataset using a 30-second threshold. This threshold was chosen for its clinical relevance. The research advances epileptic seizure detection using deep learning, indicating a promising direction for future medical technology. Future work will focus on expanding dataset diversity and refining methodologies to build upon these foundational results.
Development of Microclimate Data Recorder on Coffee-Pine Agroforestry Using LoRaWAN and IoT Technology Nurwarsito, Heru; Suprayogo, Didik; Sakti, Setyawan P.; Prayogo, Cahyo; Oakley, Simon; Wibawa, Aji Prasetya; Adaby, Resnu Wahyu
Journal of Robotics and Control (JRC) Vol 5, No 1 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i1.20991

Abstract

Microclimate monitoring in agroforestry is very important to understand the complex interactions between vegetation, soil, and the environment. Microclimate parameters include air and soil temperature, air humidity, soil moisture, and light intensity. This research aims to develop a new microclimate data recording system for coffee-pine agroforestry, utilizing LoRaWAN and IoT technology to capture real-time microclimate parameters. Unlike traditional data loggers that require manual download on-site, this innovative system enables instant data download from IoT servers, thereby increasing data efficiency and accessibility. The system proved effective, significantly improving the precision of air temperature and humidity, as well as soil temperature measurements, with an average accuracy of 100%. However, soil moisture and light intensity recorded lower accuracies of 81.23% and 82.56%, respectively, indicating potential areas for future research and system refinement. The system maintains a 15-minute sampling period, aligning with conventional datalogger intervals. This represents an advancement in precision agriculture for microclimate monitoring, enabling the data to be utilized in decision-making for agroforestry management, which involves complex interactions between the local microclimate and the broader ecological system. It underscores the significance of sustainable land use as a response to global climate change.
Gated Recurrent Unit (GRU) for Forecasting Hourly Energy Fluctuations Aji Prasetya Wibawa; Alfiansyah Putra Pertama Triono; Andien Khansa’a Iffat Paramarta; Faradini Usha Setyaputri; Ade Kurnia Ganesh Akbari; Akhmad Fanny Fadhilla; Agung Bella Putra Utama; Leonel Hernandez
Frontier Energy System and Power Engineering Vol 5, No 1 (2023): January
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um049v5i1p16-25

Abstract

In the current digital era, energy use undeniably supports economic growth, increases social welfare, and encourages technological progress. Energy-related information is often presented in complex time series data, such as energy consumption data per hour or in seasonal patterns. Deep learning models are used to analyze the data. The right choice of normalization method has great potential to improve the performance of deep learning models significantly. Deep learning models generally use several normalization methods, including min-max and z-score. In this research, the deep learning model chosen is Gated Recurrent Unit (GRU) because the computational load on GRU is lighter, so it doesn't require too much memory. In addition, the GRU data is easier to train, so that it can save training time. This research phase adopts the CRISP-DM methodology in data mining as a solution commonly used in business and research. This methodology involves six stages: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment. In this research, the model was obtained using five attribute selection, which applied 2 normalization methods: min-max and z-score. With this normalization, the GRU model produces the best MAPE of 3.9331%, RMSE of 0.9022, and R2 of 0.9022. However, when using z-score normalization, the model performance decreases with MAPE of 10.4332%, RMSE of 0.7602, and R2 of 0.4213. Overall, min-max normalization provides better performance in multivariate time series data analysis.
Forecasting Hourly Energy Fluctuations Using Recurrent Neural Network (RNN) Aji Prasetya Wibawa; Ade Kurnia Ganesh Akbari; Akhmad Fanny Fadhilla; Alfiansyah Putra Pertama Triono; Andien Khansa’a Iffat Paramarta; Faradini Usha Setyaputri; Agung Bella Putra Utama; Jehad A.H. Hammad
Frontier Energy System and Power Engineering Vol 5, No 2 (2023): July
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um049v5i2p50-57

Abstract

Energy forecasting is currently essential due to its various benefits. Energy data analysis for forecasting requires a functional method due to the complexity of the observed data. This forecasting study used the Recurrent Neural Networks (RNN) method. Parameters used include batch size, epoch, hidden layers, loss function, and optimizer obtained from hyperparameter tuning grid search. A comparison of different normalization methods, namely min-max, and z-score, was conducted. Using min-max normalization yielded the best performance with MAPE of 3.9398%, RMSE of 0.0630, and R2 of 0.8996. In testing with z-score normalization, it showed a performance of MAPE of 10.6120%, RMSE of 0.7648, and R2 of 0.4142.
Mining the public sentiment for wayang climen preservation and promotion Aji Prasetya Wibawa; Adjie Rosyidin; Fitriana Kurniawati; Gwinny Tirza Rarastri; Ilham Ari Elbaith Zaeni; Suyono Suyono; Agung Bella Putra Utama; Felix Andika Dwiyanto
International Journal of Visual and Performing Arts Vol 5, No 2 (2023)
Publisher : ASSOCIATION FOR SCIENTIFIC COMPUTING ELECTRICAL AND ENGINEERING (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/viperarts.v5i2.1163

Abstract

Indonesia is a country that has a variety of cultural arts, one of which is shadow puppetry (Wayang). Wayang, in a staged, simple, and minimalist manner, is called Wayang Climen. Wayang Climen has been performed since the COVID-19 pandemic as a solution to keep working while still complying with health protocols. Utilization through YouTube social media attracts people to watch and provide opinions through comments. This opinion is beneficial and can be used as a feasibility study through sentiment analysis information classified as positive, negative, and neutral opinions. Sentiment analysis determines a person's opinion and tendency to opinionated sentences. The methods used are Random Forest (RF), Support Vector Machine (SVM), and Naïve Bayes (NB). The dataset comes from YouTube comments of Dalang Seno and Ki Seno Nugroho. The best accuracy is generated by SVM (70.29%). The positive sentiment shows the public's appreciation for the Wayang Climen performance, which ultimately represents the performance even though it is staged densely. This research contributes to effectively utilizing digital platforms for cultural preservation and audience engagement during challenging times, demonstrating the potential for innovative solutions in traditional arts and entertainment.
Forecasting learning in electrical engineering and informatics: An ontological approach Agung Bella Putra Utama; Syaad Patmanthara; Aji Prasetya Wibawa; Gülsün Kurubacak
International Journal of Education and Learning Vol 5, No 3: December 2023
Publisher : Association for Scientific Computing Electrical and Engineering(ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijele.v5i3.1227

Abstract

This research explores the vital role of ontology in learning forecasting in electrical engineering and informatics. As formally defined models of knowledge, ontologies are critical in organizing concepts for predictive learning. More than just an inquiry, our research reveals complex interconnections centered on Internet of Things (IoT) design, the semantic web, and knowledge modeling. Applications demonstrate the practical significance of ontologies in fostering intelligent connections, advancing information production, and improving interactions between computers, devices, and humans. This research introduces a comprehensive forecasting learning ontology to highlight the importance of ontologies in education, scientific inquiry, and developing systems for predictive analysis. Ontologies provide a structured framework for understanding the essence of predictive learning, encompassing key elements such as ideas, terminology, methodology, algorithms, data preprocessing, assessment, validation, data sources, application environments, interactions with technology, and learning processes. Emphasizing ontologies as indispensable instruments that drive technological development, our work underscores structured representation, semantic interoperability, and knowledge integration. In summary, this research improves the understanding of ontologies in forecasting by explaining practical applications and revealing new perspectives. Its unique contribution lies in its specific applications and natural consequences, laying the foundation for the future progress of ontology and learning forecasting, especially in educational contexts.
Implementasi Mesin Pencacah Rumput Otomatis Menggunakan Panel Surya sebagai Solusi Efektif untuk Ternak Sapi Aripriharta, Aripriharta; Wibawa, Aji Prasetya; Sujito, Sujito; Mizar, Alfian; Faidzin, Ilham; Rahmadhani, Nur Aini Syafrina; Bagaskoro, Muhammad Cahyo
Abditeknika Jurnal Pengabdian Masyarakat Vol. 4 No. 2 (2024): Oktober
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/abditeknika.v4i2.4919

Abstract

Peternakan Lembu Ndeso yang berlokasi di Desa Kedungrejo, Kecamatan Pakis, Kabupaten Malang, Jawa Timur 65154 dan berfokus pada perkembangbiakan sapi. Peternakan ini menghadapi kesulitan signifikan dalam memproses pakan ternak secara efisien dan dalam jumlah yang memadai. Proses pencacahan pakan secara manual tidak hanya memakan waktu dan tenaga yang besar, tetapi juga menghasilkan hasil yang tidak seragam dan tidak efisien, yang menyebabkan pemborosan sumber daya. Dampaknya, produktivitas peternakan sapi terhambat dan pendapatan peternak menurun. Solusi yang diusulkan adalah penggunaan teknologi tepat guna (TTG) berupa mesin pencacah rumput yang didukung oleh Pembangkit Listrik Tenaga Surya (PLTS). Mesin ini dirancang untuk mempercepat dan meningkatkan efisiensi proses pencacahan pakan ternak. Manfaatnya termasuk peningkatan efisiensi dan efektivitas pencacahan pakan, proses yang lebih ramah lingkungan dengan memanfaatkan energi surya, serta kemudahan dalam pengendalian dan pemantauan operasional mesin. Proses perencanaan dan perancangan teknologi ini melibatkan observasi langsung, pencatatan detail, dan wawancara dengan mitra usaha, dengan tujuan menghasilkan solusi TTG yang berkelanjutan dan memberikan manfaat jangka panjang bagi para peternak Lembu Ndeso. Dengan demikian, teknologi ini diharapkan dapat membantu peternak dalam mengelola pakan ternak mereka secara lebih efisien dan meningkatkan kesejahteraan peternak. Hasil implementasi menunjukkan bahwa mesin pencacah rumput yang didukung PLTS berhasil meningkatkan efisiensi proses pencacahan pakan, dengan panel surya menghasilkan daya optimal pada cuaca cerah dan tetap berfungsi meskipun ada variasi cuaca. Pelatihan penggunaan mesin kepada warga Desa Kedungrejo mendapat antusiasme tinggi, dan serah terima teknologi kepada mitra berjalan lancar, menandakan potensi keberlanjutan penggunaan teknologi ini untuk meningkatkan produktivitas peternakan Lembu Ndeso.   Lembu Ndeso Farm, located in Kedungrejo Village, Pakis District, Malang Regency, East Java 65154, focuses on cattle breeding. The farm faced significant difficulties in processing animal feed efficiently and in sufficient quantities. The manual process of chopping feed is not only time-consuming and labor-intensive, but also produces non-uniform and inefficient results, leading to a waste of resources. As a result, cattle farming productivity is hampered and farmers' income decreases. The proposed solution is the use of appropriate technology (TTG) in the form of a grass chopping machine powered by a Solar Power Plant (PLTS). The machine is designed to speed up and improve the efficiency of the fodder chopping process. The benefits include increased efficiency and effectiveness of feed chopping, a more environmentally friendly process by utilizing solar energy, and ease in controlling and monitoring machine operations. The process of planning and designing this technology involved direct observation, detailed note-taking and interviews with business partners, aiming to produce a sustainable TTG solution that provides long-term benefits to Lembu Ndeso farmers. Thus, this technology is expected to help farmers manage their animal feed more efficiently and improve the welfare of farmers.
Co-Authors A.N. Afandi Abd. Rasyid Syamsuri Abdur Rohman Achmad Fanany Onnilita Gaffar Adaby, Resnu Wahyu Ade Kurnia Ganesh Akbari Aditya Wahyu Setiawan Adjie Rosyidin Adnan, Adam Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agung Bella Putra Utama Agus Purnomo Ahmad Munjin Nasih Ahmad Naim Che Pee Ahmad Taufiq Aindra, Alifah Diantebes Aji, Bayu Kuncoro Akbari, Ade Kurnia Ganesh Akhimullah Akmal Fattah Akhmad Fanny Fadhilla Akrom Tegar Khomeiny Alfiansyah Putra Pertama Triono Ali, Martina Alifah Diantebes Aindra Amro, Manar Y Anak Agung Istri Sri Wiadnyani Andien Khansa’a Iffat Paramarta Andika Dwiyanto, Felix Andini, Nurul Fajriah Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andrew Nafalski Andri Pranolo Andriansyah, Muhammad Rizal Angeline, Grace Anggreani, Desi Anik Nur Handayani Anton Prafanto Anusua Ghosh Anusua Ghosh, Anusua Arbian Sulistyo, Danang Ardiansyah, Mohammad Iqbal Firman Aripriharta - Arya Tandy Hermawan Ashar, Muhammad Astuti, Wistiani Atmaja, I Made Ari Dwi Suta Atmaja, Nimas Hadi Ba, Abdoul Fatakhou Bagaskoro, Muhammad Cahyo Bahalwan, Lugas Anegah Baitun Nadhiroh Bambang Widi Pratolo Bella Putra Utama, Agung Betty Masruroh Bety Masruroh Bin Abdul Hadi, Abdul Razak Bin Haji Jait, Adam Cahyo Prayogo, Cahyo Cengiz, Korhan Cholisah Erman Hasihi Chong , Wan Ni Chuttur, Mohammad Yasser Citra Suardi Citra, Hana Rachma Collante, Leonel Hernandez Daniar Wahyu Darwis, Herdianti Dedes, Khen Dedi Kuswandi Dedy Kuswandi Denis Eka Cahyani Denna Delawanti Chrisyarani, Denna Delawanti Desi Anggreani Devita, Riri Nada Dewandra, Aderyan Reynaldi Fahrezza Dewi, Popy Maulida Dhani Wahyu Wijaya Dhani Wahyu Wijaya Dhaniyar Dhaniyar Didik Dwi Prasetya Didik Nurhadi Didik Suprayogo Dika Fikri L Dityo Kreshna Argeshwara Dityo Kreshna Argeshwara Drezewski, Rafał Dwi Jaelani, Mardian dwi yasa, arnelia Dwieb, Mohamed Dwiyanto, Felix Andika Dwiyanto, Felix Andika Dyah Lestari Edinar Valiant Hawali Eka Nurcahya Ningsih Elta Sonalitha Endah Setyo Wardani Erna Daniati Esther Irawati Setiawan Fachrul Kurniawan Fachrul Kurniawan Fadhilah, Farhan Fadhilla, Akhmad Fanny Fadhli Almu’iini Ahda Faidzin, Ilham Fajar Purnama Fajarwati, Erliana Faller, Erwin Faradini Usha Setyaputri Farid Miftahuddin Farida Nur Kumala Fauzan Cahya Arifin Felix Andika Dwiyanto Felix Andika Dwiyanto Felix Andika Dwiyanto Felix Andika Dwiyanto Ferdinand, Miftakhul Anggita Bima Ferina Ayu Pusparani Filby , Brilliant Filby, Brilliant Fitria, Nimas Dian Fitriana Kurniawati Gianika Roman Sosa Graciello, Manuel Tanbica Gülsün Kurubacak Gunawan Gunawan Gwinny Tirza Rarastri Hammad, Jehad A. H. Hammad, Jehad A.H Hari Putranto Haris Anwar Syafrudie Harits Ar Rasyid Harits Ar Rosyid Hariyono Hariyono Hariyono Hariyono Hariyono Hariyono Hartono, Nickolas Hary Suswanto Hasanuddin, Tasrif Hashim, Ummi Raba’ah Haviluddin Haviluddin Haviluddin, - Hendrawan, William Hartanto Herdianti Darwis Heri Pratikto Herman Herman Herman Thuan To Saurik Heru Nurwarsito Heru Wahyu Herwanto Hery Widijanto Hidayah Kariima Fithri Hidayah, Laily Hidayatul Ma'rifah Hitipeuw, Emanuel Hong, Yeap Chi I Made Wirawan I Nyoman Gede Arya Astawa Idris Idris Ilham Mulya Putra Pradana Imansyah, Pranadya Bagus Imro’aturrozaniyah, Imro’aturrozaniyah Inggar Tri Agustin Mawarni Irsyada, Rahmat Islam, Noorul Islami, Pio Arfianova Fitrizky Islami, Pio Arfianova Fitrizky Islami, Pio Arfianova Fitrizky Ismail, Amelia Ritahani Istiqlal, Adib Izdihar, Zahra Nabila Jabari, Nida Jehad A. H. Hammad Jehad A.H. Hammad Jevri Tri Ardiansah Junoh, Ahmad Kadri Juwita Annisa Fauzi Juwita Annisa Fauzi Kaki, Gregorius Paulus Mario Laka Kasturi Kanchymalay, Kasturi Kelvin Wong Khafit Badrus Zaman Khoiruddin Asfanie Khurin Nabila Kirya Mateeke Moses Kohei Arai Kurniawan, Fachrul Kurniawan, Novian Candra Kurniawati, Fitriana Kuswandi, Dedy Laily Hidayah Langlang Gumilar Lauretta, Giovanny Cyntia Lazuardi Noorca Rachmadi Leonel Hernandez Leonel Hernandez Leonel Hernandez, Leonel Lestari, Muqodimah Nur Lestari, Muqodimah Nur Lestari, Muqodimah Nur Liang, Yoeh Wen Lisa Ramadhani Harianti Lisa Ramadhani Harianti Ludovikus Boman Wadu Luther Latumakulita M. Alfian Mizar M. Zainal Arifin Mairi, Vitrail Gloria Mansoor Abdul Hamid Mantony, Oslida Mao, Yingchi Marchena, Piedad Marida, Tyas Agung Cahyaning Marji Marji Markus Diantoro Masruroh, Bety Mazarina Devi Meiga Ayu Ariyanti Mhd. Irvan, Mhd. Irvan Mifta Dewayani Miftahul Qiki Winata Ming F. Teng Ming Foey Teng Ming Foey Teng, Ming Foey Mochamad Hariadi Moh. Zainul Falah Mohamad Rodhi Faiz Mokh Sholihul Hadi Moses, Kirya Mateeke Moses, Kirya Mateeke Moses, Kirya Mateeke Mudakir, Mudakir Muh. Aliyazid Mude Muhamad Arifin Muhammad Busthomi Arviansyah Muhammad Ferdyan Syach Muhammad Firman Aji Saputra Muhammad Iqbal Akbar Muhammad Jauharul Fuadi Muhammad Nu’man Hakim Muhammad, Abdullahi Uwaisu Muladi Munir Munir Muntholib Muqodimah Nur Lestari Mursyit, Mohammad Nabila Izdihar, Zahra Nabila, Khurin Nada, Anita Qotrun Nadhiroh, Baitun Nadia Roosmalita Sari Nadia Roosmalita Sari Nafalski, Andrew Nastiti Susetyo Fanany Putri Naufal, Ayyub Naziro Nedic, Zorica Ningsih, Eka Nurcahya Ningtyas, Yana Novia Ratnasari Noviani, Erina Fika Nugraha, Agil Zaidan Nur Cahyo Wibowo Nur Hidayatullah Nurfadila, Piska Dwi Nurhalifah, Siti Nuril Anwar, Nuril Nurroby Wahyu Saputra Nurul Falah Hashim Nurul Hidayat Nuryana, Zalik Oakley, Simon Okazaki Yasuhisa Oki Dwi Yuliana Omar, Saodah Osamu Fukuda Pakpahan, Herman Santoso Paramarta, Andien Khansa’a Iffat Paul Igunda Machumu Pio Arfianova Fitrizky Islami Praherdhiono, Hendy Prananda Anugrah Prasojo, Fadillah Pratama, Awanda Setya Sanfajar Puji Santoso Puji Santoso Puji Santoso Punaji Setyosari Pundhi Yuliawati Pundhi Yuliawati Purnawansyah Purnawansyah Purnomo Purnomo Purnomo Purnomo Purwatiningsih, Ayu Putra Utama, Agung Bella Putra, Agung Bella Utama Putri Syarifa, Dhea Fanny Putri, Desy Pratiwi Ika Putri, Fadia Irsania Putri, Nastiti Susetyo Fanany Qonita, Adiba Raden Mohamad Herdian Bhakti Rahiddin, Rahillda Nadhirah Norizzaty Rahmadhani, Nur Aini Syafrina Raja, Roesman Ridwan Ratnasari, Novia Rendy Yani Susanto Resty Wulanningrum Ridho, Faiz Mohammad Ridwan Shalahuddin Ridwan Shalahuddin Riri Nada Devita Rizal Kholif Nurrohman Rizqini, Fajriwati Qoyyum Roni Herdianto Rosmin, Norzanah Rr. Poppy Puspitasari, Rr. Poppy Rully Charitas Indra Prahmana Ruth Ema Febrita Saifullah, Shoffan Salahuddin, Lizawati Salsabila, Reni Fatrisna Santoso, Priyo Aji Saputra, Irzan Tri Sari, Nadia Roosmalita Sarni Suhaila Rahim Seno Isbiyantoro Setiawan, Ariyono Setyadi, Hario Jati Setyaputri, Faradini Usha Setyawan P. Sakti Shahrul, Azzhan Shalahuddin, Ridwan Shiddiqy, Jabar Ash Shidiqi, Maulana Ahmad As Shili, Hechmi Sias, Quota Alief Simbolon, Triyanti Sisca Rahmadonna Siti Helmyati Siti Sendari Soenar Soekopitojo Soraya Norma Mustika Stamen Gadzhanov Subadra, ST. Ulfawanti Intan Sucahyo, Cornaldo Beliarding Sugiarto Cokrowibowo Sugiyanto - Suhiro Wongso Susilo Sujito Sujito Sularso Sularso, Sularso Sulistyo, Danang Arbian Sunu Jatmika, Sunu Supeno Mardi Susiki Nugroho, Supeno Mardi Supriadi Supriadi Supriyono Supriyono Suryani, Ani Wilujeng Susilo, Suhiro Wongso Suyono Suyono Suyono Suyono Syaad Patmantara Syaad Patmanthara Syabani, Muhiban Tantri Hari Mukti Tasrif Hasanuddin Trahutomo, Dinnuhoni Tri Andi, Tri Tri Kuncoro Tri Lathif Mardi Suryanto Tri Lathif Mardi Suryanto Tri Saputra, Irzan Tri Sutanti Tri Sutanti, Tri Triono, Alfiansyah Putra Pertama Triyanna Widiyaningtyas Triyanna Widyaningtyas Triyanna Widyaningtyas, Triyanna Tsukasa Hirashima Tuatul Mahfud Ummi Rabaah Hasyim Uriu, Wako Utama , Agung Bella Putra Utama, Agung Bella Putra Utomo Pujianto Vira Setia Ningrum Vira Setia Ningrum Voliansky, Roman Wadu, Ludovikus Boman Wahyu Arbianda Yudha Pratama Wahyu Sakti Gunawan Irianto Wahyu Tri Handoko Wako Uriu Wardani, Endah Setyo Wayan Firdaus Mahmudy Wibowo, Danang Arengga Wibowo, Fauzy Satrio Wibowo, Nur Cahyo Widiharso, Prasetya Widiyanintyas, Triyanna Yandratama, Hengky Yasa, Arnelia Dwi Yingchi Mao Yongen Susman Yosi Kristian Yuliana, Oki Dwi Yuliawati, Pundhi Yuni Rahmawati Yusmanto, Yunan Zaeni, Ilham Ari Elbaith Zhou, Xiaofeng Zulkham Umar Rosyidin Zulkham Umar Rosyidin