COVID-19 has become a world concern because of the spread and number of cases that have befallen the world. Medical workers are the first exposed group because they have direct contact with patients. So, a vehicle is needed to replace tasks such as logistics, delivery, and patient waste transportation. An autonomous wheeled mobile robot (AWMR) is a wheeled robot capable of moving freely from one place to another. AWMR is required to have good navigation and trajectory control skills. The purpose of this study is to develop an AWMR navigation system model based on the simultaneous localization and mapping (SLAM) algorithm, accurately in a dynamic environment. With this research, developing a good navigation and trajectory method for AWMR, in the future, it can be applied to produce an AWMR platform for multipurpose. This research was conducted in two stages of development. The first year is the research that is currently being carried out, focused on sensor modeling, designing SLAM-based navigation models, and making navigation system testbeds. This research produces a trajectory navigation and control system that can be implemented on an AWMR platform for the purposes of logistics, transportation, and patient waste in hospitals.