Lada (Piper nigrum) adalah komoditas pertanian bernilai tinggi, namun rentan terhadap penyakit daun akibat infeksi jamur, bakteri, atau hama. Identifikasi dini penting untuk mencegah penurunan hasil panen, namun metode konvensional berbasis observasi visual sering subjektif dan membutuhkan keahlian khusus. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan model klasifikasi penyakit daun lada menggunakan jaringan syaraf tiruan Learning Vector Quantization (LVQ) berbasis pengolahan citra digital. Proses penelitian dimulai dengan preprocessing, yang mencakup konversi ke ruang warna CIELAB untuk meningkatkan kontras, segmentasi menggunakan Otsu Thresholding, serta ekstraksi fitur warna dengan Mean Color dan fitur tekstur menggunakan Gray Level Co-occurrence Matrix (GLCM). Hasil ekstraksi fitur ini kemudian digunakan sebagai masukan untuk algoritma LVQ, yang melakukan klasifikasi berdasarkan pembelajaran vektor prototipe. Hasil evaluasi menunjukkan bahwa model LVQ yang dikembangkan mencapai tingkat akurasi keseluruhan sebesar 90,83%. Model menunjukkan performa terbaik dalam mengenali daun sehat dengan Precision, Recall, dan F1-Score sebesar 96,67%. Sementara itu, kelas Anthracnose memiliki Precision terendah sebesar 87,01%, dan kelas Leaf Blight menunjukkan Recall terendah sebesar 86,67% serta F1-Score terendah sebesar 88,14%. Meskipun terdapat variasi kinerja antar kelas, model ini terbukti efektif dalam menangani dataset terbatas, memiliki kemampuan klasifikasi yang baik terhadap data non-linear, serta memungkinkan interpretasi keputusan klasifikasi yang lebih jelas.